⁴⁰Ar/³⁹Ar Geochronology

- History, fundamental issues and assumptions, nomenclature, age equation
- ⁴⁰Ar/³⁹Ar dating in practice
 - gas extraction
 - irradiation, undesirable nuclear reactions and their corrections
 - multi-collector mass spectrometry a revolution
 - minimizing uncertainties
 - appropriate samples
- Reporting, presentation, and interpretation of complex data sets
 - metadata, age spectrum, isochron, probability/kernal density, rank-order plots
 - evaluation of FCs & ACs standard ages and homogeneity
 - why precision matters and what do dates record?
 - examples: the Bishop Tuff & future challenges
- Calculation of apparent ages and uncertainties
 - standard minerals used to monitor neutron fluence
 - GTS2012 calibrates 40 Ar/ 39 Ar ages to 28.201 ± 0.046 Ma Fish Canyon sanidine (FCs) [Kuiper et al., 2008, astronomical basis]
 - Alder Creek sanidine now calibrated to 1.1864 \pm 0.0006 Ma [Jicha et al., 2016]

Wisc Ar

- analytical + systematic [decay constant & standard age] uncertainties
- Recalibrating published (legacy) dates [Mercer & Hodges, 2016]

Roots of ⁴⁰Ar/³⁹Ar geochronology: The K-Ar method

Aldrich & Nier (1948) University of Minnesota

- ⁴⁰Ar is decay product of the rarest naturally occurring isotope of potassium, ⁴⁰K
- A potentially useful geochronometer
- ³⁸Ar isotope dilution tracer allows measurement of ⁴⁰Ar* (Wasserburg & Hayden, 1955)

Potassium is 7th most abundant element in crust (2.6 wt.%)

- Common in rock forming minerals
- Isotopic composition of K at any time in geologic history is uniform
 - Presently: ⁴¹K: ⁴⁰K: ³⁹K = 6.7301: 0.01167: 93.2581
- ⁴⁰K comprises 0.01% of all K. Its radioactive decay is *branched*:
 - 10.48% via electron capture to ${}^{40}\text{Ar}$ ($\lambda_{\epsilon} = 0.580 \text{ x } 10^{-11} \text{ yr}^{-1}$)
 - 89.32% via Beta decay to ${}^{40}Ca$ (λ_{β} = 4.884 x 10⁻¹⁰ yr⁻¹)
 - Total decay constant $\lambda_{tot} = 5.463 \pm 0.107 \times 10^{-10} \text{ yr}^{-1}$ [Min 2000/Kuiper, 2008]

Argon is highly variable in isotopic composition owing to radiogenic production from ⁴⁰K

- Any closed system will accumulate ⁴⁰Ar*
- Hydrosphere-atmosphere contains following proportions (Nier, 1950, Phys. Rev.)
- 40 Ar: 38 Ar: 36 Ar = 99.60 : 0.0632 : 0.3364
- Recent revision of ⁴⁰Ar/³⁶Ar in air to 298.56 ± 0.31
- Argon is an inert gas—not bound to any mineral lattice
 - Thus loss of ⁴⁰Ar* via diffusion is common

 $[{}^{40}Ar/{}^{36}Ar_{air} = 295.5 \pm 0.5]$

(Lee et al., 2006)

The K-Ar age equation

$$t = \frac{1}{\lambda} \ln \left[1 + \frac{D}{P} \right]$$

P = number of radioactive atoms at time t, D = number of daughter atoms at t.

$$t = \frac{1}{\lambda} ln \left[1 + \left(\frac{\lambda}{\lambda_e} \right) \left(\frac{{}^{40}Ar^{*}}{{}^{40}K} \right) \right]$$

Recall branched decay of 40 K to 40 Ar such that $\lambda/\lambda_{\epsilon}$ = 9.54

Must determine concentrations of ⁴⁰K and ⁴⁰Ar* in mol/g independently

- Determine K by flame photometry (on separate split of solid mineral or rock)
- Determine ⁴⁰Ar* by isotope dilution mass spectrometry
 - Add calibrated volume of ³⁸Ar tracer as an isotope dilution spike.
 - Abundance of ⁴⁰Ar determined by relative abundances of ⁴⁰Ar to ³⁸Ar in sample
 - Also possible to determine ⁴⁰Ar manometrically by adjusting volume/pressure in mass spectrometer—the "unspiked" K-Ar technique.
- Correction for ⁴⁰Ar_i (this is the ⁴⁰Ar present at the time the mineral or rock forms)
 - ${}^{40}\text{Ar}^* {}^{40}\text{Ar}_t {}^{40}\text{Ar}_i$
 - Assume all ${}^{40}Ar_i$ derives from atmosphere in which: ${}^{40}Ar$ = 298.56 x ${}^{36}Ar$
 - Thus, ${}^{40}\text{Ar}^* = {}^{40}\text{Ar}_t (298.56 \text{ x} {}^{36}\text{Ar})$

JUNE 1, 1966

Potassium-Argon Dating by Activation with Fast Neutrons

CRAIG MERRIHUE¹ AND GRENVILLE TURNER²

Department of Physics, University of California, Berkeley

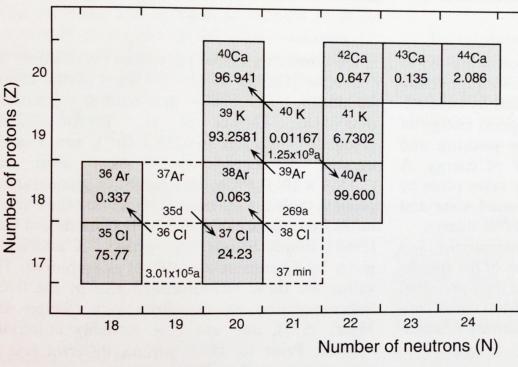
When a potassium-bearing mineral is irradiated by a neutron flux containing a significant fraction of fast neutrons, 270-year Ar^{so} is produced by the K^{so} (n, p) reaction, and this may be used as a basis for measuring the potassium-argon age of the mineral. Wänke and Konig [1959] described such a method in which counting techniques were used to detect the Ar^{so} , as well as Ar^{so} produced by the Ar^{so} (n, γ) reaction. A calculation of the potassium content for a single sample would require a knowledge of the flux-energy distribution in the reactor and the excitation function of the K^{so} (n, p) reaction. The uncertainties of this calculation can be avoided, however, by com-

¹ Dr. Craig Merrihue was killed in a climbing accident on Mount Washington, New Hampshire, on March 14, 1965.

² Present address: Department of Physics, Sheffield University, England. paring the (Ar⁴⁰/Ar³⁰) ratio in the unknown sample with that quantity in a sample of known age, given the same irradiation. In this case we may write down the following relationships.

$$\frac{(\mathrm{Ar}^{40}/\mathrm{K}^{40})}{(\mathrm{Ar}^{40}/\mathrm{K}^{40})_{s}} = \frac{(\mathrm{Ar}^{40}/\mathrm{Ar}^{39})}{(\mathrm{Ar}^{40}/\mathrm{Ar}^{39})_{s}} = \frac{(\mathrm{Ar}^{41}/\mathrm{Ar}^{39})}{(\mathrm{Ar}^{41}/\mathrm{Ar}^{39})_{s}} = \frac{(\exp(T/\tau) - 1)}{(\exp(T_{s}/\tau) - 1)}$$
(1)

T is the unknown potassium-argon age, τ is the mean life of K⁴⁰, and the subscript s refers to the sample of known age.


A correction for atmospheric contamination is not possible with this technique, and more recently *Merrihue* [1965] has suggested using mass spectrometric detection of the Ar^{39} and radiogenic Ar^{40} . The method has the advantage of allowing Ar^{38} to be measured, and, conse-

The ⁴⁰Ar/³⁹Ar age equation

in fast neutron flux:

$$^{39}Ar_{K} = ^{39}K\Delta\int\phi(E)\sigma(E)dE$$

- $^{39}\mbox{Ar}_{\rm K}$: no. of atoms of $^{39}\mbox{Ar}$ produced from $^{39}\mbox{K}$
- $^{39}\mathrm{K}$: original number of $^{39}\mathrm{K}$ atoms present
- Δ : duration of irradiation
- $\Phi(E)$: neutron flux at energy E
- $\sigma(E)$: neutron capture cross section at energy *E* for ³⁹K(n,p)³⁹Ar nuclear reaction

McDougall and Harrison (1999)

$$\frac{{}^{40}Ar}{{}^{39}Ar_K} = \frac{{}^{40}K}{{}^{39}K}\frac{\lambda_{ec}}{\lambda}\frac{1}{\Delta}\frac{[e^{\lambda t}-1]}{\int\phi(E)\sigma(E)dE}$$

define dimensionless parameter, J:

$$J = \frac{{}^{39}K}{{}^{40}K} \frac{\lambda}{\lambda_{ec}} \Delta \int \phi(E) \sigma(E) dE$$

J is a measure of the proportion of ³⁹K converted to ³⁹Ar and thus total K in sample assuming the ${}^{39}K/K_{total}$ ratio is constant in nature

The ⁴⁰Ar/³⁹Ar age equation

J is determined by measuring ${}^{40}\text{Ar}^{*/39}\text{Ar}_{\text{K}}$ in standard of known *t*

The *J* value is determined by measuring the ${}^{40}\text{Ar}^*/{}^{39}\text{Ar}_{\text{K}}$ ratio in several crystals of a neutron fluence monitor that is co-irradiated (adjacent to) with the unknown samples

In practice:

$$t = \frac{1}{\lambda} \ln \left[1 + J \frac{{}^{40}Ar *}{{}^{39}Ar_K} \right]$$

1. measure ⁴⁰Ar/³⁹Ar ratio in sample; insert J value from step 2; calculate *t*

The most widely used mineral standard is sanidine from the Fish Canyon tuff (FCs) with an age of 28.201 ± 0.046 Ma, determined through astrochronologic calibration by Kuiper et al (2008)

$$J = \frac{e^{\lambda t} - 1}{\begin{bmatrix} 40 & Ar * \\ 39 & Ar_K \end{bmatrix}}$$

2. measure ⁴⁰Ar/³⁹Ar ratio in standard mineral

Argon nomenclature

- Atmospheric argon: Argon with isotopic composition found in present day atmosphere (⁴⁰Ar/³⁶Ar = 298.56).
- Radiogenic argon: Argon formed from *in-situ* decay of ⁴⁰K in a rock or mineral (commonly denoted- ⁴⁰Ar*)
- **Trapped argon**: Argon incorporated into rock of mineral at time of its formation or during a subsequent event. For terrestrial samples this is commonly but not always the atmospheric composition. *(equivalent to the initial ⁸⁷Sr/⁸⁶Sr ratio in Rb-Sr isotope studies).*
- **Cosmogenic argon:** Argon produced from cosmogenic ray interactions with target nuclei Ca, Ti, Fe (spallation and neutron capture reactions).
- **Neutron-induced argon:** Argon produced in sample during irradiation in nuclear reactor, owing to neutron interactions with CI, K, and Ca.
- Extraneous argon: If trapped argon in terrestrial samples has ⁴⁰Ar/³⁶Ar > 298.6, the additional ⁴⁰Ar is referred to as extraneous argon:
 - Excess argon: that component of ⁴⁰Ar, apart from atmospheric argon, incorporated into samples by processes other than *in situ* radioactive decay of ⁴⁰K (fluid infiltration, unequilibrated mantle contribution carried in magma).
 - Inherited argon: that ⁴⁰Ar, essentially radiogenic, introduced into a rock or mineral sample by physical contamination from older material (beware xenocrysts!).

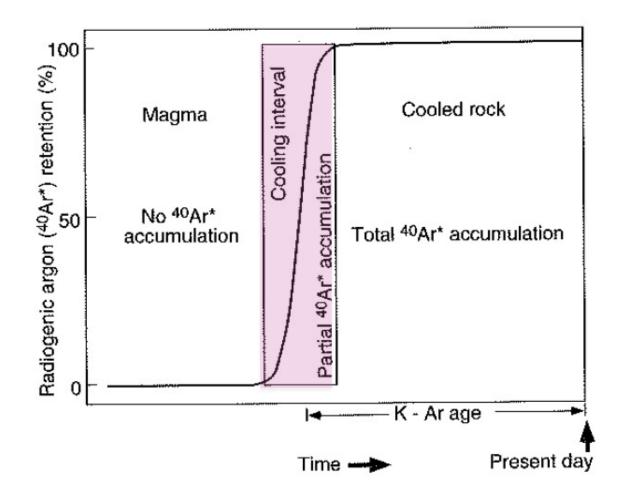
Basic assumptions

Decay Constant

- Parent nuclide ⁴⁰K decays at rate independent of physical state, P, T, or X
- $\lambda = 5.463 \times 10^{-10} \text{ y}^{-1}$; half-life $t_{\frac{1}{2}} = 1.25 \times 10^9 \text{ y}$ [Min et al., 2000].

Constant ⁴⁰K/K_{tot}

- Ratio in nature is constant in all materials today (required because ⁴⁰K not measured directly). We measure K_{tot} (K-Ar) or ³⁹Ar_K (⁴⁰Ar/³⁹Ar); ⁴⁰K is derived from the isotopic composition of K
- The ratio has changed over time due to radioactive decay, but this term does not enter into the age equation. At any given time, the ratio was constant in all materials, because isotopes are not fractionated from one another by geological processes.

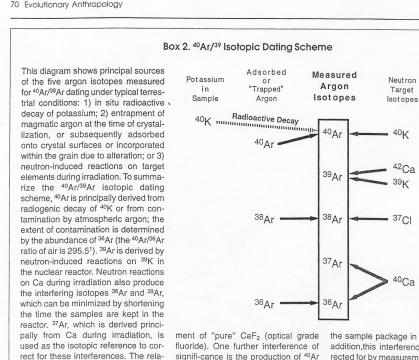

Initial ⁴⁰Ar can be quantified

- ⁴⁰Ar* measured was produced by in situ decay of ⁴⁰K in the interval since the rock crystallized or was recrystallized. Violations of this assumption are common: beware <u>excess</u> or <u>inherited argon</u>
- Corrections can be made for non radiogenic ⁴⁰Ar present in the rock being dated. Assume all such argon is atmospheric with ⁴⁰Ar/³⁶Ar = 298.6 for initial (model) purposes, Isotope correlation diagrams (isochron regression) may test this.

Closed System

- The sample must have remained a closed to the loss or gain of K or ⁴⁰Ar* other than by radioactive decay. Departures from this are common in complex, thermally effected, or altered rocks
- These assumptions must be assessed in each study undertaken
- An important advantage of ⁴⁰Ar/³⁹Ar method is that basic assumptions underlying calculation and interpretation of age are more readily assessed than is the case for K-Ar age measurements

Undesirable nuclear reactions


A principal difficulty with ⁴⁰Ar/³⁹Ar method is the production of isotopes of argon from neutron interactions with isotopes of Ca, K, Ar, Cl

ARTICLES

- The following interfering reactions are important:
 - ⁴⁰Ca(n, nα)³⁶Ar *(interferes w/atmospheric correction)*
 - ⁴²Ca(n, α)³⁹Ar
 - ⁴⁰K(n, p)⁴⁰Ar

• Fortunately an isotope of ³⁷Ar that does not occur in nature is also produced

⁴⁰Ca(n, α)³⁷Ar

fluoride). One further interference of significance is the production of 40 Ar from 40 K during irradiation; the extent of this reaction can be greatly minimized by using cadmium shielding of

the sample package in the reactor. In addition, this interference can be corrected for by measurement of the 40 Ar/ 39 Ar production ratio of the reactor through the use of an artificial K-bearing, 40 Ar* and Ca-free material.

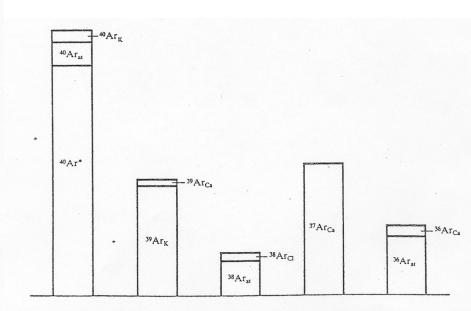


Figure 1. Mass spectrum of an irradiated mineral (between mass 40 and mass 36), with emphasis on the origin of different components. Subscripts refer to the original element Relative amounts are not respected.

Dalrymple & Lanphere (1969)

Deino

tive proportions of argon isotopes pro-

duced from reactions on Ca are

calibrated by irradiation and measure-

Undesirable nuclear reactions

³⁷Ar is produced by the ${}^{40}Ca(n,\alpha){}^{37}Ar$ reaction

- ³⁷Ar is *radioactive* with $t_{\frac{1}{2}}$ = 35.1 days
- must calculate initial ³⁷Ar following irradiation: ${}^{37}Ar_o = {}^{37}Ar_m e^{\lambda 37t} \lambda_{37} t_i / (1 e^{-\lambda 37ti})$
 - *t* = *irradiation time*
 - *t_i* = time between irradiation and analysis
 - λ_{37} = decay constant of ³⁷Ar = 0.01974/day
- permits corrections for undesirable Ca- and K-derived Ar
- corrections require measurement of 3 reactor constants:
 - [⁴⁰Ar/³⁹Ar]_K
 - [³⁶Ar/³⁷Ar]_{Ca}
 - [³⁹Ar/³⁷Ar]_{Ca}
- Corrections are based on replicate analyses of K-free Ca salt (CaF₂) and Ca-free salt (K-Fe-SiO₂) using ratios with ³⁷Ar, ³⁸Ar, ⁴⁰K

Undesirable nuclear reactions

Production of ⁴⁰Ar from ⁴⁰K is variable by order of magnitude from reactor to reactor. This must be corrected carefully in each irradiation, ideally with long-term characterization

In pure kalsilite (K-Fe-SiO₂), Ca-free glass ${}^{39}Ar_K = {}^{39}Ar_m$ (m = measured value) [${}^{40}Ar/{}^{39}Ar]_K = ({}^{40}Ar_m - {}^{36}Ar_m * 298.6)/{}^{39}Ar_m$

In pure CaF salt, ³⁶Ar is from ⁴⁰Ca and air, and ³⁹Ar is from ⁴²Ca, so: $[^{36}Ar/^{37}Ar]_{Ca} = (^{36}Ar_{m} - {}^{40}Ar_{air} / 298.6)/^{37}Ar_{m}$ $[^{39}Ar/^{37}Ar]_{Ca} = (^{39}Ar_{m} / {}^{37}Ar_{m})$

Correction factors for **cadmium-shielded** irradiations in the CLICIT (cadmium-lined in-core irradiation tube) at the Oregon State University based on UW-Madison and Berkeley Geochronology Center data:

$$\begin{split} & [{}^{40}\text{Ar}/{}^{39}\text{Ar}]_{\text{K}} = 0.00054 \pm 0.00014 \\ & [{}^{36}\text{Ar}/{}^{37}\text{Ar}]_{\text{Ca}} = 0.000265 \pm 0.000002 \\ & [{}^{39}\text{Ar}/{}^{37}\text{Ar}]_{\text{Ca}} = 0.000695 \pm 0.000009 \end{split}$$

Calculation of apparent ages and analytical uncertainties

Calculation of ⁴⁰Ar*/³⁹Ar

$$m = \text{measured}$$

$$Ca = \text{neutron induced on Ca}$$

$$K = \text{neutron induced on K}$$

$$A = \text{atmospheric } ({}^{40}\text{Ar}/{}^{36}\text{Ar} = 298.6)$$

$$\left[\frac{}^{36}\text{Ar}}{}^{37}\text{Ar}\right] = \left[\frac{}^{36}\text{Ar}_m - {}^{40}\text{Ar}_A / 298.6}{}^{37}\text{Ar}\right]$$

$$\left[\frac{}^{40}\text{Ar}_m = {}^{40}\text{Ar}_m + {}^{40}\text{Ar}_A + {}^{40}\text{Ar}_K + {}^{40}\text{Ar}_{Ca}}{}^{(3.34)}\right]$$

$$\left[\frac{}^{40}\text{Ar}_m = {}^{40}\text{Ar}_m - {}^{40}\text{Ar}_A - {}^{40}\text{Ar}_K + {}^{40}\text{Ar}_{Ca}}{}^{(3.34)}\right]$$

$$\left[\frac{}^{40}\text{Ar}_m = {}^{40}\text{Ar}_m - {}^{40}\text{Ar}_A - {}^{40}\text{Ar}_K + {}^{40}\text{Ar}_{Ca}}{}^{(3.35)}\right]$$

$$\left[\frac{}^{36}\text{Ar}_m = {}^{36}\text{Ar}_m - {}^{40}\text{Ar}_A - {}^{40}\text{Ar}_K + {}^{40}\text{Ar}_{Ca}}{}^{(3.36)}\right]$$

$$\left[\frac{}^{36}\text{Ar}_m = {}^{36}\text{Ar}_A - {}^{40}\text{Ar}_K - {}^{40}\text{Ar}_$$

substitute 3.37 into 3.35:

$${}^{40}\text{Ar}^* = {}^{40}\text{Ar}_{\text{m}^-} 298.6^{*36}\text{Ar}_{\text{m}} + 298.6^{*36}\text{Ar}_{\text{Ca}} - {}^{40}\text{Ar}_{\text{K}}$$
(3.38)

$${}^{39}\text{Ar}_{m} = {}^{39}\text{Ar}_{K} + {}^{39}\text{Ar}_{Ca} \text{, so that}$$
(3.39)

$$^{39}\text{Ar}_{\text{K}} = ^{39}\text{Ar}_{\text{m}} - ^{39}\text{Ar}_{\text{Ca}}$$
 (3.40)

Divide 3.38 by 3.40 and both numerator and denominator by $^{39}\mathrm{Ar}_\mathrm{m}$

$$\frac{{}^{40}Ar^{*}}{{}^{39}Ar_{K}} = \left[\frac{\left({}^{40}Ar/{}^{39}Ar\right)_{m} - 298.6\left({}^{36}Ar/{}^{39}Ar\right)_{m} + 298.6\left({}^{36}Ar/{}^{37}Ar\right)_{Ca}\left({}^{40}Ar_{K}/{}^{39}Ar\right)_{m}}{1 - \left({}^{39}Ar_{Ca}/{}^{37}Ar_{m}\right)}\right] (3.41)$$

McDougall and Harrison (1999)

Calculation of apparent ages and analytical uncertainties

As:

$$\frac{{}^{36}Ar_{Ca}}{{}^{39}Ar_m} = \frac{{}^{36}Ar_{Ca}}{{}^{37}Ar_{Ca}} \frac{{}^{37}Ar_m}{{}^{39}Ar_m} = \left[\frac{{}^{36}Ar}{{}^{37}Ar}\right]_{Ca} \left[\frac{{}^{37}Ar}{{}^{39}Ar}\right]_m$$

because ${}^{37}\text{Ar}_{\text{Ca}} = {}^{37}\text{Ar}_{\text{m}}$, and

$$\frac{{}^{39}Ar_{Ca}}{{}^{39}Ar_m} = \frac{{}^{39}Ar_{Ca}}{{}^{37}Ar_{Ca}} \frac{{}^{37}Ar}{{}^{39}Ar_m}$$

for the same reason:

$$\frac{{}^{40}Ar_K}{{}^{39}Ar_m} = \left[\frac{{}^{40}Ar}{{}^{39}Ar}\right]_K \frac{{}^{39}Ar_K}{{}^{39}Ar_m} = \left[\frac{{}^{40}Ar}{{}^{39}Ar}\right]_K \left[1 - \frac{{}^{39}Ar_{Ca}}{{}^{39}Ar_m}\right]_K$$

we can re-write 3.41:

$$\frac{{}^{40}Ar}{{}^{39}Ar_{K}} = \left[\frac{\left({}^{40}Ar/{}^{39}Ar\right)_{m} - 298.6\left({}^{36}Ar/{}^{39}Ar\right)_{m} + 298.6\left({}^{36}Ar/{}^{37}Ar\right)_{Ca}\left({}^{37}Ar/{}^{39}Ar\right)_{m}}{1 - \left({}^{39}Ar/{}^{37}Ar\right)_{Ca}\left({}^{37}Ar/{}^{39}Ar\right)_{Ca}}\right] - \left[\frac{{}^{40}Ar}{{}^{39}Ar}\right]_{K}$$

McDougall and Harrison (1999)

Calculation of apparent ages and analytical uncertainties

- 1. errors for each ratio in 3.42 are obtained from the least squares regression of peak height to time of inlet of gas to spectrometer.
- 2. these can be combined quadratically with other errors (e.g., mass discrimination) to give overall error estimate for given ratio.
- 3. error in ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{\text{K}}$ is complex function of all errors in eq. 3.42.

a. error magnification as proportion of ${}^{40}\text{Ar}_{\text{A}}$ increases as well.

4. Dalrymple and Lanphere (1971) derived error formula by differentiation of 3.42. The variance (st. dev. squared) of the ${}^{40}\text{Ar}^{*/39}\text{Ar}_{\text{K}}$ ratio is given by:

$$F_{F}^{2} = F_{G}^{2} + C_{1}^{2}F_{B}^{2} + [C_{4}G - C_{1}C_{4}B + C_{1}C_{2}]^{2}F^{2}$$

$$F_{F}^{40}Ar^{*/39}Ar_{K}$$

$$G_{-}(^{40}Ar/^{39}Ar)_{m}$$

$$B_{-}(^{36}Ar/^{39}Ar)_{m}$$

$$D_{-}(^{37}Ar/^{39}Ar)_{m}$$

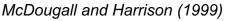
$$C_{1}^{-}(^{40}Ar/^{36}Ar)_{A} = 298.6$$

$$C_{2}^{-}(^{36}Ar/^{37}Ar)_{Ca}$$

$$C_{3}^{-}(^{40}Ar/^{39}Ar)_{K}$$

$$C_{4}^{-}(^{39}Ar/^{37}Ar)_{Ca}$$
is gives errors for individual gas analysis. However, are equation also includes *I*:

This gives errors for individual gas analysis. However, age equation also includes J:


$$t = \frac{1}{\lambda} \ln \left[1 + J \frac{{}^{40}Ar^*}{{}^{39}Ar_K} \right]$$

For error in age calculated from the ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{\text{K}}$ ratio, we must also include error in *J*:

$$F_{t}^{2} = [J^{2}F_{F}^{2} + F^{2}F_{J}^{2}] / [\lambda^{2}(1+FJ)^{2}]$$
(3.44)

Typical errors in J are of the order <0.2 % of the measured value

For all sub-samples from which measured 40 Ar/ 39 Ar are converted to t using a single J value, this error in J i calculated.


⁴⁰Ar/³⁹Ar dating in practice gas extraction, clean up, mass spectrometry

Automated gas handling

- heating
- gas clean-up
- inlet to mass spectrometer
- 15 45 min analysis time

Mass spectrometers

- Single collector, Secondary Electron Multiplier (SEM) detector, peak scanning
- Multi-collector instruments, 5 detectors, including either ion counting multipliers, Faraday collectors, or both

Materials useful for ⁴⁰Ar/³⁹Ar dating

Volcanic rocks (useful for time scale and stratigraphic studies)

- Minerals
 - Sanidine (to 2 ka)
 - Anorthoclase (to 5 ka)
 - Plagioclase (to 200 ka)
 - Amphibole (to 1 Ma)
 - Biotite
 - Leucite
 - Nepheline
- Whole-rock material
 - Groundmass concentrate (to 3-4 ka)
 - Non-hydrated glass (to 300 ka)

Plutonic, metamorphic, ore minerals

- K-spar
- Plagioclase
- Biotite
- Amphibole
- Muscovite
- Phengite
- Alunite
- Adularia

Sediments

- Clays (encapsulated fusion)
- Glauconite (")
- Evaporites (e.g., langbeinite, $K_2Mg_2(SO_4)_3$)
- Detrital K-bearing minerals
- Alunite/jarosite as weathering products

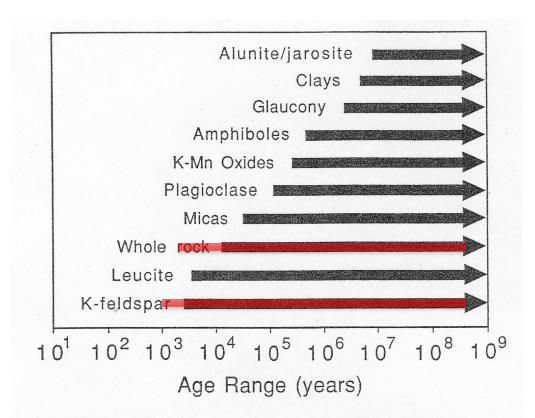
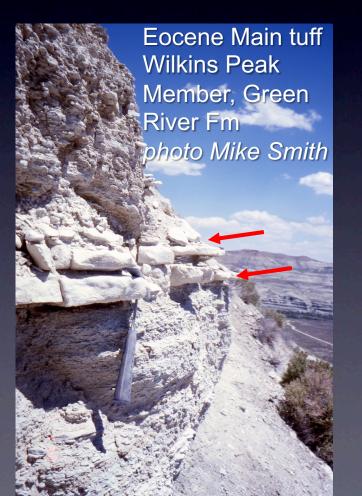
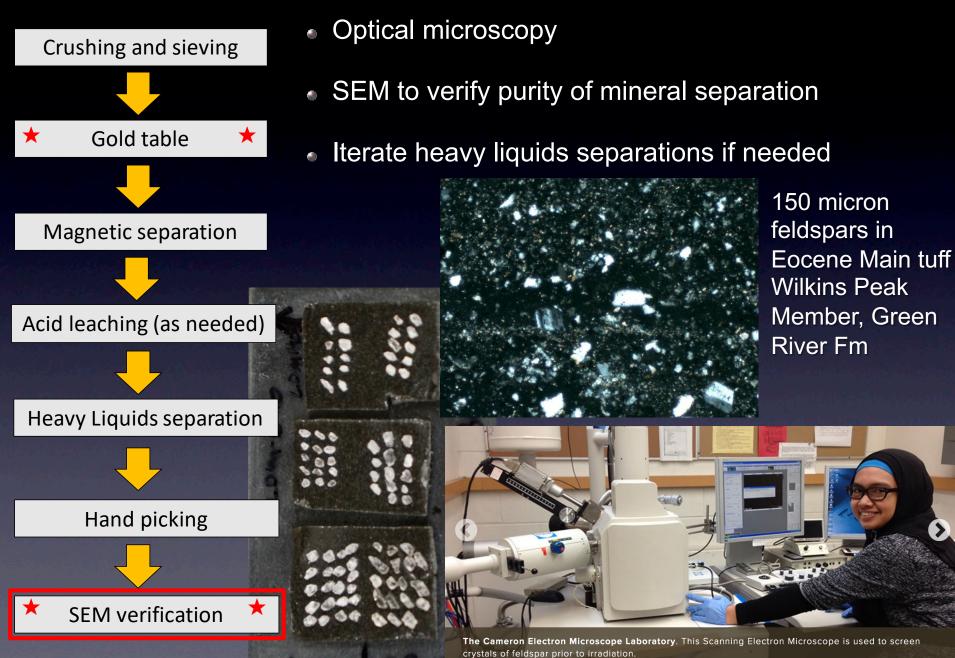


Figure 4. Age range of K-Ar and ⁴⁰Ar/³⁹Ar dating applicability for various materials.

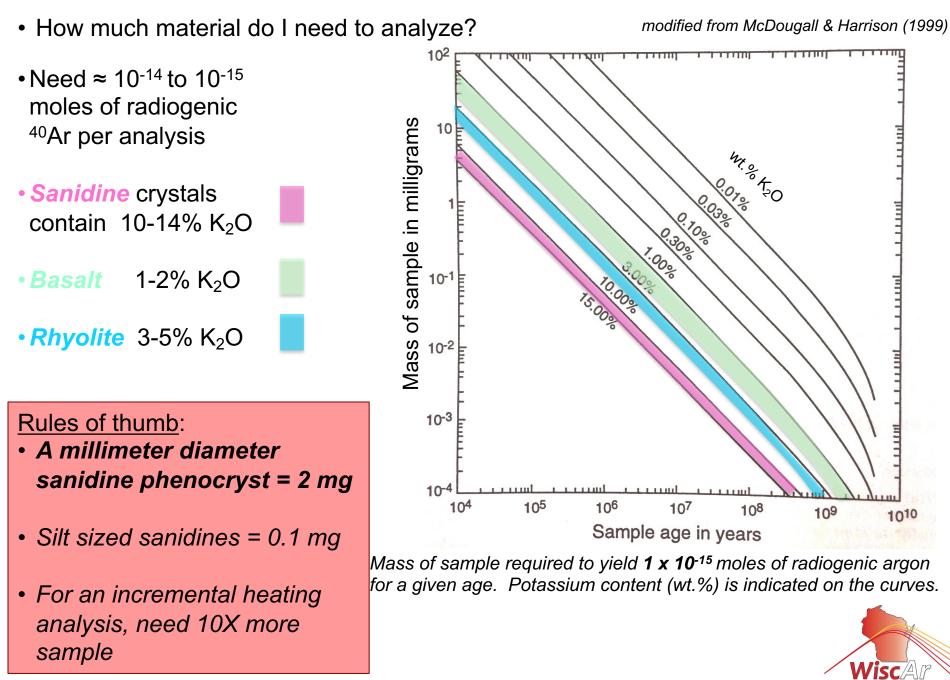
Renne, 2000


Sampling - Lavas

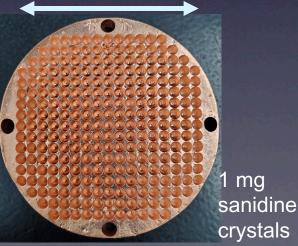
- "The first step of any geochronological analysis involves selecting the sample". Reiners et al. Geochronology and Thermochronology (2017)
- Target the slowly cooled interior of the lava flow
 - Avoid outer skin or rubbly base
 - Avoid oxidized/vesicular sections
 - Avoid sampling close to intrusions
 - Take good notes!!


Sampling - Tephra

- Tephra is commonly crystal-poor and fine-grained
 - Sample from crystal-rich portions of the deposit
 - Collect sufficient material for multiple chronometers & methods
 - Avoid contamination from surrounding beds

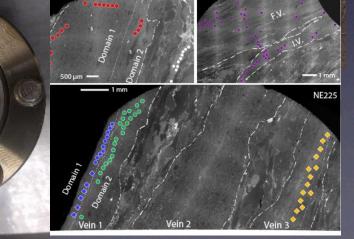


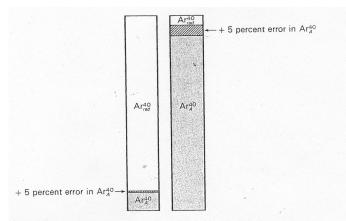
Sample preparation – Tephra & Bentonite


A note on sample sizes for multi-collector mass spectrometry

Analysis - Gas extraction

- Infrared laser heating
 - 10.6 μm wavelength CO₂ laser
 - Incremental-heating or total fusion of small samples/single crystals
 - lo mg basalt groundmass


60 mm



Ultraviolet laser ablation

- 193 nm excimer laser
- In-situ analyses
- 2-150 micron resolution

FIGURE 7-3

An error in the atmospheric argon correction is much more serious when the radiogenic argon percentage is small than when it is large.

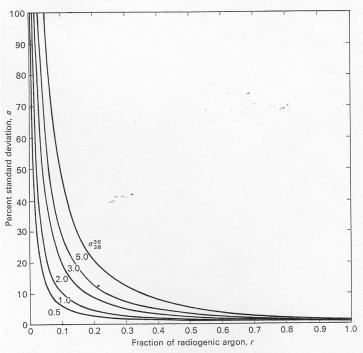


FIGURE 7-4

Percentage standard deviation, σ , in a potassium-argon age as a function of the fraction of radiogenic argon, r, for various values of σ_{33}^{86} . The curves were calculated from equation (7-1) using $\sigma_k=0.5$ percent, $\sigma_x=0.3$ percent, and $\sigma_{43}^{85}=0.2$ percent. [After A. Cox and G. B. Dalrymple, Jour. Geophys. Res., v. 72, p. 2603-2614, 1967.]

Estimated analytical uncertainties

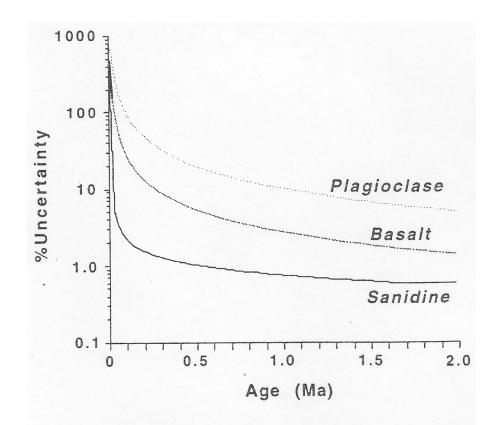
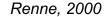



Figure 7. Results of error modeling for three compositionally distinct samples; based on parameters discussed in text. Plagioclase has 0.25 percent K, Ca/K = 10; Basalt has 1.0 percent K, Ca/K = 10; Sanidine has 10 percent K, Ca/K = 0.005.

Dalrymple and Lanphere, 1969

Table 1

 40 K λ_{ϵ}

⁴⁰Κ λ_β ³⁹Ar

37Ar

³⁶Cl λ_β

 $(5.81 \pm 0.00)E - 11 a^{-1}$

 $(2.58 \pm 0.03)E - 03 a^{-1}$

 $(2.35 \pm 0.02)E - 06 a^{-1}$

 $(4.962 \pm 0.000)E - 10 a^{-1}$

 $(5.4300 \pm 0.0063)E - 02 a^{-1}$

Table 1 Ar/Ar data and c	onstants used in ag	e calculatio	ons. All er	rors shown at 1σ . Colu	mns in grey	y are o	optiona	al but reco	ommended.						Doto roporti
Sample: SH-10		Lab #: 33	018-23	J: 0.026703 ± 0.00003	5			D ¹ : 1.00	66 ± 0.0028	3	Heating:	60 s			Data reporti
Plagioclase		IGSN #: P	RR001S35	5											g
Irradiation coord	linates: $x = 0.53$ cm	y = 0.85 c	zm; z = 0.3	31 cm											9
N Power	⁴⁰ Ar	⁴⁰ Ar	$\pm \sigma_{40}$	³⁹ Ar	$\pm \sigma_{39}$	³⁸ Ar	12	$\pm \sigma_{38}$	³⁷ Ar	$\pm \sigma_{37}$	³⁶ Ar	$\pm \sigma_{36}$		* ⁴⁰ Ar*/	
(W)	(moles)) (10 ⁻¹⁰ A)	(10^{-13} A)	(10-	¹² A)		(10 ⁻⁹ A)		(10^{-13} A)) (10^{-14} A))	³⁹ Ar _K	
A 0.5	1.02E-15	0.09713		0.13065	0.75	0.182		1.40	0.00623	0.34	0.894	1.58	73.3	5.44705	
B 1.0	2.97E-15	0.28389		0.37977	1.03	0.522		1.56	0.04644		2.958	1.66	70.5	5.26945	
C 2.0	4.83E-15	0.46124		0.80945	1.82	1.140		1.91		1.25	3.437	1.74	83.2	4.74526	
D 3.0	9.57E-15	0.91352		1.67572	2.51	2.084		2.12	0.86354		3.155	1.62	97.3	5.31674	
E 3.5 F 4.0	8.23E-15	0.78615		1.42415	1.92 1.42	1.798		1.93	0.79177 1.04196	2.18	2.493 3.466	1.70 1.78	98.7 98.1	5.45845 5.48319	
F 4.0 G 4.5	1.08E-14 1.58E-14	1.505031		1.84797 2.68337	2.31	3.26		2.45	1.43274	4.53 5.81	4.354	1.63	98.1 99.1	5.56719	
H 5.0	1.23E-14	1.17480		2.10604	1.92	2.67		2.45		2.37	3.220	1.05	99.1 99.9	5.58655	
1 5.5	1.07E-14	1.02511		1.82579	1.42	2.154		2.54	1.06036		3.095	1.88	99.3	5.59020	
J 6.0	9.84E-15	0.93946		1.66172	1.72	2.098		2.54	0.90347	2.01	2.904	1.66	98.6	5.58306	
K 7.0	1.49E-14	1.42628		2.52346	2.22	3.118		2.79		2.55	4.526	1.74	98.1	5.55503	
L 8.0	1.10E-14	1.04627		1.86079	1.72	2.38		2.15	1.14403	4.55	3.554	1.74	98.7	5.56264	
M 9.0	1.05E-14	1.00506		1.79407	2.31	2.159		2.49	1.02569	2.55	2.837	1.19	99.8	5.60404	
N 10.0	6.41E-15	0.61219		1.09883	2.02	1.23		2.22	0.64627		1.781	1.16	99.8	5.57491	
0 11.0	5.73E-15	0.54674		0.98238	1.82	1.193		1.87	0.64561		1.745	1.13	100.0	5.57995	
P 13.0	1.18E-14	1.13165	1.10	2.03544	2.02	2.490	08	2.57	1.26407	2.56	3.588	1.60	99.6	5.54828	
Q 15.0	1.32E-14	1.25708	1.30	2.23161	2.32	2.73	92	2.38	1.31670	5.11	4.075	1.77	98.8	5.57751	
R 17.0	6.91E-15	0.65976	0.96	1.17350	2.12	1.408	85	2.20	0.70525	1.58	2.325	1.60	98.1	5.52946	
S 19.0	5.45E-15	0.52065		0.93267	1.72	1.154	49	1.94	0.56381	1.28	1.599	1.52	99.6	5.57175	
T 21.0	2.29E-15	0.21907		0.39150	1.23	0.476		1.70	0.29765		0.818	1.60	99.8	5.60246	
U 25.0	2.61E-15	0.24968		0.43979	1.13	0.550		1.86		1.20	0.895	1.45	99.5	5.66349	
V 30.0	2.07E-15	0.19761		0.35355	1.13	0.43		1.61	0.20480	0.95	0.745	1.51	97.1	5.44124	
W 35.0	1.52E-15	0.14560		0.25177	0.87	0.254		1.35	0.15352	0.77	0.719	1.43	93.8	5.43822	
X 40.0	9.78E-16	0.09338	0.31	0.07986	0.67	0.094	48	1.35	0.04472	0.47	2.090	1.68	37.6	4.40197	
Plateau Age (stej	ps = A).														
Standard: FCs		Lab #: 33		Age: 28.02 Ma				D^1 : 1.00	64 ± 0.0025	5	Heating:	11s			
	ordinates: $x = 0.53$					20.			27.		26 .			40	
N Power	⁴⁰ Ar	⁴⁰ Ar	$\pm \sigma$	³⁹ Ar	$\pm \sigma$	³⁸ Ar		$\pm \sigma$	³⁷ Ar	$\pm \sigma$	³⁶ Ar	$\pm \sigma$		⁴⁰ Ar*/	
(W)	(moles)	(10 ⁻⁹ A)	(10 ⁻¹² A)) (10 ⁻ A)	(10^{-12} A)	(10-	¹⁰ A)	(10 ⁻¹³ A	A) (10^{-10} A)	(10^{-13} A)	(10 ⁻¹³ A) (10 ⁻¹⁴ A))	³⁹ Ar _K	
1 6	1.50E-13	14.24722	5.41	2.40864	8.1	2.90	784	3.40	1.7624	3.6	2.93	3.83	99.5	0.587201	
2 6	9.32E-14	8.83707		1.49479	6.3	1.79		2.30	0.9241	3.6	0.88	3.18	99.8	0.588753	
3 6	6.89E-14	6.53115		1.10531	6.0	1.343		3.40	0.9526	6.0	1.78	3.64	99.3	0.585437	
4 6	2.78E-13	26.31198		4.48005	16.0	5.39		5.30	3.1305	6.0	2.57	3.70	99.8	0.584912	
5 6	8.86E-14	8.39561	5.80	1.41043	6.7	1.699	933	1.90	1.0669	3.3	4.91	3.51	98.4	0.584240	
Weighted Mean	J:														
Explanations	insting one Abdulb														
	ination per AMU b			d have been after a brain											
				d beginning of analysis									Quatern	hary Geochro	nology 4 (2009) 346-352
Constants used	e = average; LR = lin	liear regres	SIOII VEISI	Source											
Atmospheric arg	on ratios			Jource			- Martin Bild	1048-946-34-5	is.			C	ontent	e liete ava	ilable at ScienceDirect
(⁴⁰ Ar/ ³⁶ Ar) _A	296.0 ± 0.74			Nier (1950)			NA CO		2			C	ontent	5 11515 444	
$({}^{40}\text{Ar}/{}^{38}\text{Ar})_{A}$	0.1880 ± 0.0001			Nier (1950)			700000		蔣						
	pe production ratio	S		(1000)			SN	19850				011	ater	nary	Geochronology
$({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}}$	$(7.30 \pm 0.92)E - 04$			Renne et al. (2005)			58 -	肥闲				Ea	acci	July	2 cooling of the state of the s
(³⁸ Ar/ ³⁹ Ar) _K	$(1.22 \pm 0.00)E - 02$			Renne et al. (2005)			Necking	V. Stalle	4						
$({}^{37}Ar/{}^{39}Ar)_{\rm K}$	$(2.24 \pm 0.16)E - 04$			Renne et al. (2005)			FIS	EVIE	R		jour	nal hon	nepad	ge: www	.elsevier.com/locate/quageo
(³⁹ Ar/ ³⁷ Ar) _{Ca}	$(6.95 \pm 0.09)E - 04$			Renne et al. (2005)											1 3
$({}^{38}\text{Ar}/{}^{37}\text{Ar})_{Ca}$	$(1.96 \pm 0.08)E - 05$			Renne et al. (2005)											
$({}^{36}Ar/{}^{37}Ar)_{Ca}$	$(2.65 \pm 0.02)E - 04$	1		Renne et al. (2005)			Shor	t Comn	nunicati	on					
(³⁶ Cl/ ³⁸ Cl) _{Cl}	263 ± 2			Renne et al. (2008)								1.2			
Decay constants							Dat	a ren	orting	r nor	ms fo	r 40 A	1394	r geo	chronology
401/ 2	(E 01 0 00)E 11			Staiger and Lager (1077			Dut	uiu			115 10	1 11	1 1	IL SUU	

Steiger and Jäger (1977)

Steiger and Jäger (1977)

Stoenner et al. (1965)

Renne and Norman (2001)

Endt (1998)

Data reporting norms for ⁴⁰Ar/³⁹Ar geochronology

Paul R. Renne ^{a,b,*}, Alan L. Deino ^a, Willis E. Hames ^c, Matthew T. Heizler ^d, Sidney R. Hemming ^e, Kip V. Hodges ^f, Anthony A.P. Koppers ^g, Darren F. Mark ^h, Leah E. Morgan ^b, David Phillips ⁱ, Brad S. Singer ^j, Brent D. Turrin ^k, Igor M. Villa ¹, Mike Villeneuve ^m, Jan R. Wijbrans ⁿ

Data reporting in ⁴⁰Ar/³⁹Ar geochronology

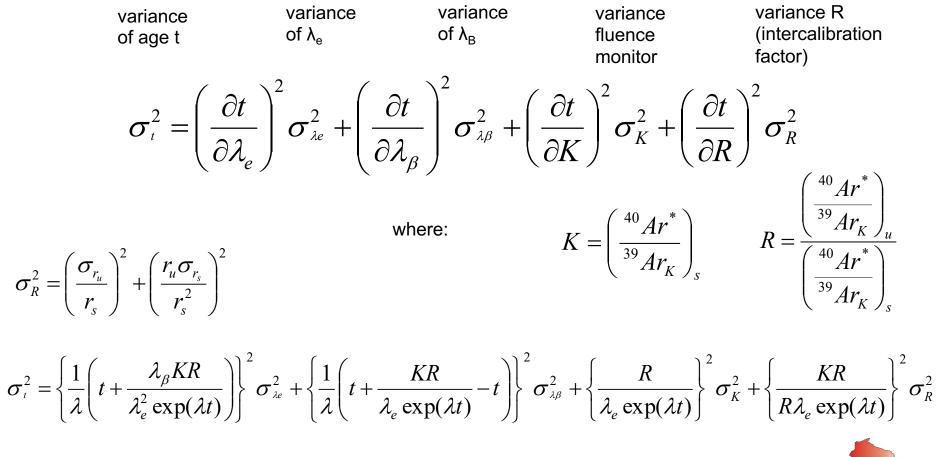
QUATERNARY GEOCHRONOLOGY

Data reporting in ⁴⁰Ar/³⁹Ar geochronology

Table 1

Ar/Ar data and constants used in age calculations. All errors shown at 1*a*. Columns in grey are optional but recommended

Ar/Ar data and co	Ar data and constants used in age calculations. All errors shown at 1 <i>a</i> . Columns in grey are optional but recommended.																												
Sample: SH-10 Lab #: 33018-23 J: 0.026703 ± 0.000035 D ¹ : 1.0066 ± 0.0028 Heatin							Heating:	60 s Heating: 60 s IGSN #: PRR001S35																					
Plagioclase IGSN #: PRR001S35									Irradiation coordinates: x = 0.53 cm; y = 0.85 cm; Background Correction																				
Irradiation coordinates: $x = 0.53$ cm; $y = 0.85$ cm; $z = 0.31$ cm $z = 0.31$ cm $z = 0.31$ cm										ction																			
N Power (W)	⁴⁰ Ar (moles)	⁴⁰ Ar ± (10 ⁻⁹ A) (10 ⁻⁹ A) (10 ⁻⁹ A)			±σ ₃₉ (10 ⁻¹³ A	³⁸ Ar (10 ⁻¹² A)	±σ ₃₈ (10 ⁻¹⁴ A	³⁷ Ar) (10 ⁻⁹ A)		³⁶ Ar (10 ⁻¹³ A)	±σ ₃₆) (10 ⁻¹⁴ A		⁴⁰ Ar*/ ³⁹ Ar _K	$\pm \sigma$	Age (Ma)	$\pm \sigma$ (Ma)	Ca/K	Δt^2 (days)	Blank type ³		$\pm \sigma_{40}$ (10 ⁻¹⁴ A)	³⁹ Ar (10 ⁻¹⁴ A)	$\pm \sigma_{39}$ (10 ⁻¹⁵ A)	³⁸ Ar (10 ⁻¹⁵ A)	$\pm \sigma_{38}$ (10 ⁻¹⁶ A)	³⁷ Ar (10 ⁻¹⁵ A)	$\pm \sigma_{37}$ (10 ⁻¹⁶)	³⁶ Ar A) (10 ⁻¹⁵ A	$\pm \sigma_{36}$ (10 ⁻¹⁶ A)
A 0.5	1.02E-15	0.09713		0.13065	0.75	0.1826	1.40	0.00623		0.894	1.58	73.3	5.44705	0.33890	244.99	15.24	0.94	146.50	LR	3.81130	1.906	1.511	1.21	1.82	1.6	4.30	0.8	3.70	0.6
	2.97E-15	0.28389		0.37977	1.03	0.5222	1.56			2.958	1.66		5.26945		237.51	5.78	2.40			3.81062	1.905	1.511	1.21	1.82	1.6	4.30	0.8	3.70	0.6
C 2.0 D 3.0	4.83E-15 9.57E-15	0.46124 0.91352		0.80945 1.67572	1.82 2.51	1.1409 2.0841	1.91 2.12	0.30175 0.86354		3.437 3.155	1.74	83.2 97.3	4.74526 5.31674		215.23	3.02	7.31	146.55		3.80924	1.905	1.510	1.21	1.81	1.6	4.30	0.8	3.70	0.6
E 3.5	8.23E-15	0.78615		1.42415	1.92	1.7982	1.93	0.79177		2.493	1.70		5.45845	0.03604 0.04152	239.50 245.47	1.62 1.87	10.10 10.90	146.60 146.63		3.80649 3.80302	1.903 1.902	1.509 1.508	1.21 1.21	1.81 1.81	1.6 1.6	4.29 4.29	0.8 0.8	3.70 3.69	0.6 0.6
F 4.0	1.08E-14	1.03031		1.84797	1.42	2.3459	2.22	1.04196		3.466	1.78		5.48319	0.04132	246.51	1.62	11.05	146.66		3.79885	1.899	1.506	1.20	1.81	1.6	4.29	0.8	3.69	0.6
G 4.5	1.58E-14			2.68337	2.31	3.2651	2.45	1.43274		4.354	1.63		5.56719	0.02921	250.04	1.31	10.47	146.71	LR	3.79333	1.897	1.504	1.20	1.81	1.6	4.28	0.8	3.68	0.6
H 5.0 I 5.5	1.23E-14 1.07E-14	1.17480 1.02511	1.21	2.10604 1.82579	1.92 1.42	2.6711 2.1541	2.45 2.54	1.18087 1.06036		3.220 3.095	1.71 1.88		5.58655 5.59020	0.03244	250.85	1.46	10.99	146.74		3.78713	1.894	1.501	1.20	1.80	1.6	4.27	0.8	3.68	0.6
6.0	9.84E-15	0.93946		1.66172	1.72	2.0981	2.54	0.90347		2.904	1.66		5.58306	0.03766 0.03672	251.00 250.70	1.69 1.65	11.38	146.76		3.78026	1.890 1.886	1.499 1.495	1.20 1.20	1.80	1.6	4.26 4.26	0.8 0.8	3.67 3.66	0.6
K 7.0	1.49E-14			2.52346	2.22	3.1186	2.79	1.33248		4.526	1.74		5.55503	0.03023	249.53	1.36	10.66 10.35	146.82 146.84		3.77205 3.76316	1.882	1.495	1.20	1.80 1.79	1.6 1.6	4.20	0.8	3.65	0.5 0.5
L 8.0	1.10E-14	1.04627		1.86079	1.72	2.3874	2.15	1.14403		3.554	1.74		5.56264	0.03646	249.85	1.64	12.05	146.87		3.75360	1.877	1.488	1.19	1.79	1.6	4.23	0.8	3.64	0.5
M 9.0 N 10.0	1.05E-14 6.41E-15	1.00506 0.61219		1.79407 1.09883	2.31 2.02	2.1591 1.2350	2.49	1.02569 0.64627		2.837	1.19 1.16		5.60404 5.57491		251.58	1.39	11.21	146.92		3.74277	1.871	1.484	1.19	1.78	1.6	4.22	0.8	3.63	0.5
0 11.0	5.73E-15			0.98238	1.82	1.1939	1.87			1.745	1.13		5.57995	0.03965	250.36	1.78	11.53	146.95		3.73127	1.866	1.479	1.18	1.78	1.6	4.21	0.8	3.62	0.5
P 13.0	1.18E-14	1.13165		2.03544	2.02	2.4908	2.57	1.26407		3.588	1.60		5.54828	0.04189	250.57 249.25	1.88 1.50	12.88 12.17	146.98 147.03		3.71910 3.70566	1.860 1.853	1.474 1.469	1.18 1.18	1.77	1.6 1.6	4.20 4.18	0.8	3.61 3.60	0.5 0.5
Q 15.0	1.32E-14			2.23161	2.32	2.7392	2.38	1.31670		4.075	1.77		5.57751	0.03334	249.25 250.47	1.50	11.56	147.03		3.69160	1.855	1.469	1.18	1.77	1.6	4.18	0.8	3.58	0.5
R 17.0	6.91E-15	0.65976		1.17350	2.12	1.4085	2.20	0.70525		2.325	1.60		5.52946	0.04655	248.46	2.09	11.78	147.08		3.67693	1.838	1.458	1.17	1.75	1.6	4.15	0.8	3.57	0.5
S 19.0 T 21.0	5.45E-15 2.29E-15	0.52065		0.93267 0.39150	1.72 1.23	1.1549 0.4764	1.94 1.70	0.56381 0.29765		1.599 0.818	1.52 1.60		5.57175 5.60246	0.05278	250.23	2.37	11.85	147.13	LR	3.66101	1.831	1.451	1.16	1.74	1.6	4.13	0.8	3.55	0.5
U 25.0	2.61E-15			0.43979	1.13	0.5508	1.86			0.895	1.45		5.66349	0.11888	251.52	5.34	14.90	147.16		3.64448	1.822	1.445	1.16	1.74	1.6	4.11	0.8	3.54	0.5
V 30.0	2.07E-15			0.35355	1.13	0.4359	1.61	0.20480		0.745	1.51		5.44124		254.07 244.75	4.36 5.53	14.02 11.35	147.19		3.62735 3.60903	1.814 1.805	1.438 1.431	1.15 1.14	1.73 1.72	1.6 1.5	4.09 4.07	0.8 0.8	3.52 3.50	0.5 0.5
W 35.0	1.52E-15	0.14560		0.25177	0.87	0.2547	1.35	0.15352		0.719	1.43		5.43822	0.12304 0.16149	244.75	5.53 7.26		147.24 147.27			1.805	1.431	1.14	1.72	1.5	4.07	0.8	3.50	0.5
	9.78E-16	0.09338	0.31	0.07986	0.67	0.0948	1.35	0.04472	0.47	2.090	1.68	37.6	4.40197		200.50	27.33		147.29		3.57072		1.416	1.13	1.70	1.5	4.03	0.8	3.47	0.5
Plateau Age (step:	s E-X):														249.78	0.49													
Standard: FCs	ordinates: $x = 0.53$	Lab #: 3301		Age: 28.02 Ma			D^1 : 1.000	64 ± 0.0025		Heating:	11s								Backer	round Corre	ction								
N Power	^{40}Ar	⁴⁰ Ar +			$\pm \sigma$	³⁸ Ar	$\pm \sigma$	³⁷ Ar	$\pm \sigma$	³⁶ Ar	$\pm \sigma$	% ⁴⁰ Ar*	40Ar*/	±σ	1	$+\sigma$	Ca/K	Δt^2	Blank		+ <i>α</i>	³⁹ Ar	$\pm \sigma$	³⁸ Ar	$\pm \sigma$	³⁷ Ar	$\pm \sigma$	³⁶ Ar	$+\sigma$
(W)	(moles)	(10 ⁻⁹ A) (10 ⁻¹² A)		(10 ⁻¹² A	(10^{-10} A)) (10 ⁻¹⁰ A)					³⁹ Ar _K	10	J	10	cant	(days)		(10 ⁻¹² A)					(10 ⁻¹⁶ A)				
1 6	1.50E-13	14.24722	5.41	2.40864	8.1	2.90784	3.40	1.7624	3.6	2.93	3.83	99.5	0.587201	0.001619	0.026657	0.000073	0.014	70.05	Ave	7.59623	3.136	5.4374	4.38	2.90784	3.40	3.71	0.5	5.07	0.7
2 6	9.32E-14	8.83707		1.49479	6.3	1.79535	2.30			0.88	3.18		0.588753	0.001683	0.026586	0.000076	0.012	70.08	Ave	7.59623	3.136	5.4374	4.38	1.79535	3.40	3.71	0.5	5.07	0.7
3 6	6.89E-14	6.53115		1.10531	6.0	1.34318	3.40			1.78	3.64		0.585437		0.026737				Ave	7.59623	3.136	5.4374	4.38	1.34318	3.40	3.71	0.5	5.07	0.7
4 6 5 6	2.78E-13 8.86E-14	26.31198 1 8.39561		4.48005 1.41043	16.0 6.7	5.39509 1.69933	5.30 1.90			2.57 4.91	3.70 3.51		0.584912 0.584240		0.026761				Ave		3.136	5.4374	4.38	5.39509	3.40	3.71	0.5	5.07	0.7 0.7
Weighted Mean J	:	0.555501	5100		0.7	1.00000	1.00	1.0005	5.5		5.51	50.1	0.00 12 10	0.001812	0.026792	0.000083	0.015	70.18	Ave	7.59623	3.136	5.4374	4.38	1.69933	3.40	3.71	0.5	5.07	0.7
Explanations															0.020703	0.000033	b.												
	ination per AMU b			d beginning of analysis																									
	= average; LR = lir																												
Constants used				Source																									
Atmospheric argo																													
	296.0 ± 0.74 0.1880 ± 0.0001			Nier (1950) Nier (1950)																									
	e production ratio	s		Net (1550)																									
(⁴⁰ Ar/ ³⁹ Ar) _K	$(7.30 \pm 0.92)E - 04$			Renne et al. (2005)																									
	$(1.22 \pm 0.00)E - 02$			Renne et al. (2005)																									
	$(2.24 \pm 0.16)E - 04$			Renne et al. (2005)														Quater	rnary C	Geochronol	logy 4 (200	09) 346-3	52						
	$(6.95 \pm 0.09)E - 04$ $(1.96 \pm 0.08)E - 05$			Renne et al. (2005) Renne et al. (2005)																									
	$(2.65 \pm 0.02)E - 04$			Renne et al. (2005)						_	-		9							2000			1.4.1.1.2.2				_	元	
	263 ± 2			Renne et al. (2008)						2	a strat		夏				C	onten	its lis	ts availa	ble at S	cience	Direct					GEOCHRON	RNARY
Decay constants		1								1	1-2-1	125-18																	and the second sec
⁴⁰ Κ λ ₆ ⁴⁰ Κ λ ₈	$(5.81 \pm 0.00)E - 11$ $(4.962 \pm 0.000)E -$			Steiger and Jäger (1977) Steiger and Jäger (1977)							a way	(Cop)	996				0			0	1		1					NUN	
³⁹ Ar	$(4.962 \pm 0.000)E =$ $(2.58 \pm 0.03)E = -03$			Stoenner et al. (1965)	,					200		CON A					Qu	late	rna	iry G	eoch	rone	Diogy	/				ALL MANANANANANANANANANANANANANANANANANANAN	
³⁷ Ar	(5.4300 ± 0.0063)			Renne and Norman						2.	att al	C.N					-			5			05					Carried D	3
36.01.2	(2.25 . 0.02)5	1		(2001)							CONTRACT PAR	Zort	£.																-
³⁶ Cl λ _β	$(2.35 \pm 0.02)E - 06$	a		Endt (1998)						F	ELSE	VIE	R			journa	al hor	mepa	ge:	www.e	Isevier	.com/	locate/	quage	0				
										-																			


Short Communication

Data reporting norms for ⁴⁰Ar/³⁹Ar geochronology

Paul R. Renne ^{a,b,*}, Alan L. Deino ^a, Willis E. Hames ^c, Matthew T. Heizler ^d, Sidney R. Hemming ^e, Kip V. Hodges ^f, Anthony A.P. Koppers ^g, Darren F. Mark ^h, Leah E. Morgan ^b, David Phillips ⁱ, Brad S. Singer ^j, Brent D. Turrin ^k, Igor M. Villa ¹, Mike Villeneuve ^m, Jan R. Wijbrans ⁿ

Systematic errors and total uncertainty

- With high precision dating, must consider sources of internal error (analytical, J), as well as external error (decay constant, standard age)
- Karner and Renne (1998), Renne et al. (1998); combine all systematic sources of error quadratically

Preferred ages for ⁴⁰Ar/³⁹Ar standard minerals

- GTS2012 values
- Reference is astronomically calibrated age of FCs (Kuiper et al., 2008)

Standard Name	Intercalibration Factor (R ⁱ FCs)	Apparent Age* ± int. (ext.) (Ma)	References				
FCs, FCT-3		28.201 ± (0.046)	Kuiper et al. (2008)				
MMhb-1	21.4876 ± 0.0079	527.0 ± 0.3 (2.6)	Renne et al. (1998)				
Hb3gr	51.8780 ± 0.0754	$1081.5 \pm 2.4 \ (10.4)$	Jourdan and Renne (2007) Jourdan et al. (2006)				
TCs	1.0112 ± 0.0010	$28.51 \pm 0.06 \; (0.06)$	Renne et al. (1998)				
GA-1550	3.5958 ± 0.0031	99.44 ± 0.17 (0.18)	Jourdan and Renne (2007) Renne et al. (1998b)				
ACs	0.04229 ± 0.00006	1.201 ± 0.003 (0.003)	Renne et al. (1998)				
GHC-305	3.8540 ± 0.0128	106.4 ± 0.7 (0.7)	Jourdan and Renne (2007) Renne et al. (1998)				
LP-6	4.6654 ± 0.0058	$128.0 \pm 0.3 \ (0.3)$	Baksi et al. (1996)				
Bern 4 Mu	0.6606 ± 0.0053	18.68 ± 0.30 (0.30)	Baksi et al. (1996)				
Bern 4 Bi	0.6138 ± 0.0050	17.36 ± 0.28 (0.28)	Baksi et al. (1996)				
SB-3	6.0582 ± 0.0249	$164.5 \pm 1.3 (1.3)$	Baksi et al. (1996)				

Schmitz (2012)

Flow chart & time line for ⁴⁰Ar/³⁹Ar analyes in WiscAr lab

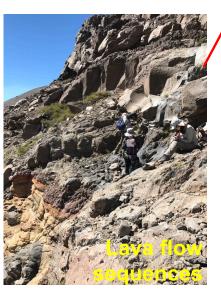
Wt. Mean= 0.7756 +/- 4e-04 ; MSWD= 1.79 Red = 2σ ; Blue = wt. mean with 95% Cl Warning: probability of fit is < 0.15

0.772 0.773 0.774 0.775 0.776 0.777

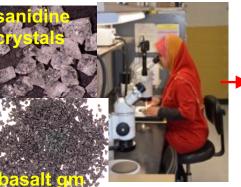
Age (Ma)

0.00

0.003


0.001

Outcrop



Weeks

Timeline:

Sample preparation

Plotting, interrogation, interpretation

Weeks

Probability density

-1.5 -1.0 -0.5 0.0 0.5

Age spectrum

Theoretical Quantiles

10 15

Wt. Mean= 0.7655 +/- 0.001 ; MSWD= 0.5 Boxes are 2\sigma ; Red is wt, mean with 95% CI

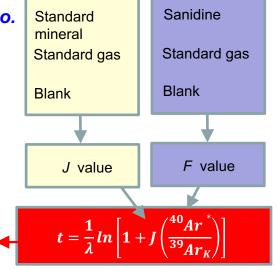
%³⁹Ar

Age (Ma) 0.7750

(Ma)

Irradiation

2-3 month queue cooldown in lab 2+ mo.


Isochron

39Ar/40Ar

Combined isochron: 211.0 ± 12.8 ka

¹⁰Ar/⁰⁶Ar_i = 299.4 ± 27.1 MSWD = 0.13 **Degassing, mass spectrometry**

1 hour each set of measurements

12 hours for one incremental heating analysis

Days to weeks

⁴⁰Ar/³⁹Ar Geochronology

- Basic issues and assumptions, nomenclature, age equation
- ⁴⁰Ar/³⁹Ar dating in practice
 - gas extraction
 - irradiation, undesirable nuclear reactions and their corrections
 - multi-collector mass spectrometry *a revolution*
 - minimizing uncertainties
 - appropriate samples
- Reporting, presentation, and interpretation of complex data sets
 - metadata, age spectrum, isochron, probability/kernal density, rank-order plots
 - evaluation of FCs & ACs standard ages and homogeneity
 - why precision matters and what do dates record?
 - examples: the Bishop Tuff & future challenges
- Calculation of apparent ages and uncertainties
 - standard minerals used to monitor neutron fluence
 - GTS2012 calibrates 40 Ar/ 39 Ar ages to 28.201 \pm 0.046 Ma Fish Canyon sanidine (FCs) [Kuiper et al., 2008, astronomical basis]
 - Alder Creek sanidine now calibrated to 1.1864 \pm 0.0006 Ma [Jicha et al., 2016]
 - analytical + systematic [decay constant & standard age] uncertainties
- Recalibrating published (legacy) dates [Mercer & Hodges, 2016]

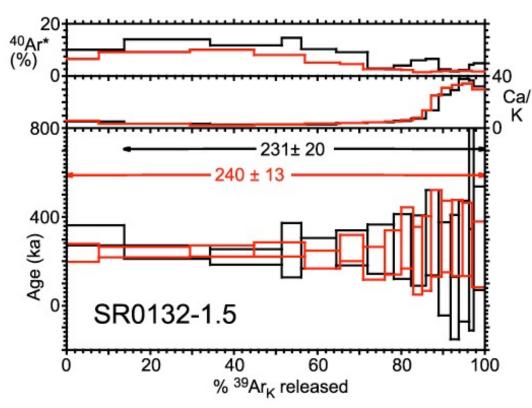
Data Reporting and Interpretation

Four main ways to portray results:

Age spectrum diagrams

• Error-weighted mean 'plateau' ages

Isotope correlation (isochron) diagrams


- Regression analysis
- Inverse isochron diagrams

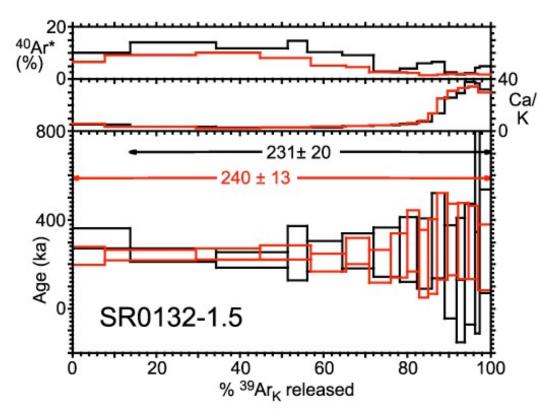
Simple 'rank order' diagrams for comparing among data sets

Probability density or Kernal density diagrams

Age spectrum diagrams

Plot apparent ages \pm uncertainty vs. % ³⁹Ar released

- K/Ca spectrum
 - mineral control on release pattern
- Spectrum of radiogenic ⁴⁰Ar*
 - indicator of Ar loss; air contamination


For rocks with simple thermal history, define "plateau" age

 Arbitrary criteria (e.g., Fleck et al., 1977); three consecutive steps, concordant in age at 95% confidence level, comprising > 50% of gas released

Sharp & Renne (2005) Mauna Kea alkali basalt

Each apparent age/step weighted by inverse of variance, $1/\sigma_i^2$

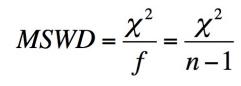
- gives much less weight to steps with larger uncertainties
- inverse-variance weighted mean $x_{best} = \sum w_i x_i / \sum w_i$
- where weights are

Age spectrum diagrams

 $w_i = 1/\sigma_i^2$ x_i = individual measured ages

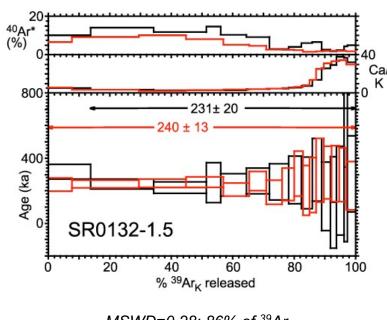
• error estimate for weighted mean $\sigma_{xbest} = (\Sigma w_i)^{-\frac{1}{2}}$

Age spectrum diagrams


Statistical evaluation of the best-fit solution

How do we evaluate how well a best-fit solution, in this case the weighted mean of a normal distribution, describes our data distribution?

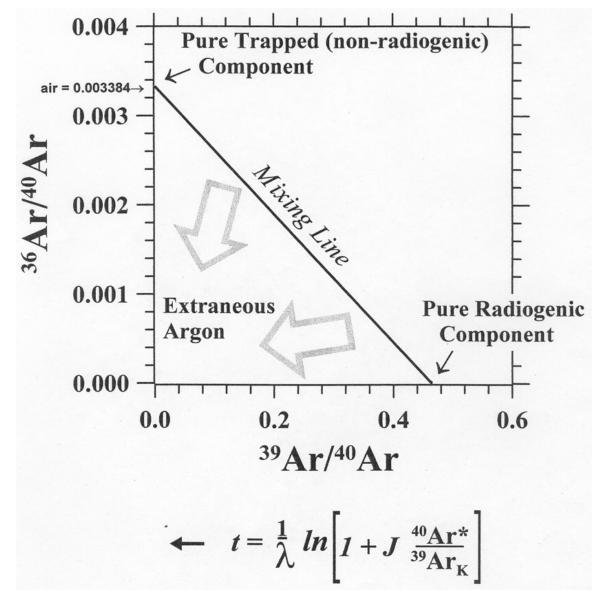
We can define our goodness-of-fit parameter, χ^2 , as the sum of the squares of the deviations of our observations from our model mean value, weighted by the variances of those observations:


$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{x_{i} - \overline{x}}{\sigma_{i}} \right)^{2}$$

In geochronology, we have a tradition of normalizing the χ^2 statistic by the degrees of freedom of the system to derive the **Mean Squared Weighted Deviation** or **MSWD** (e.g. Wendt and Carl, 1991). This statistic quantifies the extent to which data scatter from the best-fit solution beyond stated uncertainties.

f is the degrees of freedom of the model, e.g. the number of experimental parameters (measurements) – number of model parameters (unknowns)

- **MSWD <1** if observed scatter is less than that predicted by analytical uncertainties. In this case, the data are said to be "underdispersed", indicating analytical uncertainties are overestimated
- If MSWD ≈ 1, agreement between expected and observed distribution of errors is good. This is a univariate, Gaussian, distribution. use σ_{xbest} as calculated
- If MSWD >1 if the observed scatter exceeds that predicted by the analytical uncertainties. Data are "overdispersed". If MSWD < cut-off value (students-t table), then:
 - multiply σ_{xbest} by (MSWD)^{1/2} to obtain uncertainty estimate
- If MSWD > cut-off value, reject plateau age



MSWD=0.28; 86% of ³⁹Ar MSWD=0.81; 99% of ³⁹Ar

Inverse isochron diagrams

- ³⁶Ar/⁴⁰Ar vs. ³⁹Ar/⁴⁰Ar
- 3-component mixing diagram
 - radiogenic component along abcissa
 - trapped component along ordinate
 - extraneous argon below mixing line
- isochrons make no assumption about the composition of the trapped component
 - errors more conservative than plateau errors
 - Error-weighting and MSWD criteria used to estimate goodness of fit
 - regression may indicate
 excess argon as a ⁴⁰Ar/³⁶Ar
 intercept > 298.6
- spread in data below isochron may indicate inherited argon
 - range of partly degassed radiogenic components?
 - single largely undegassed radiogenic component?

Inverse isochron diagrams

42

B.S. Singer / Quaternary Geochronology 21 (2014) 29-52

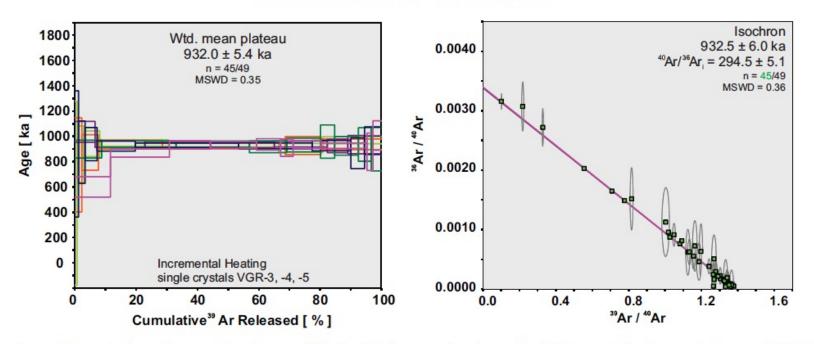
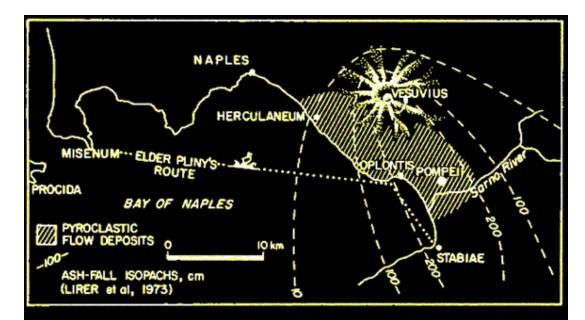
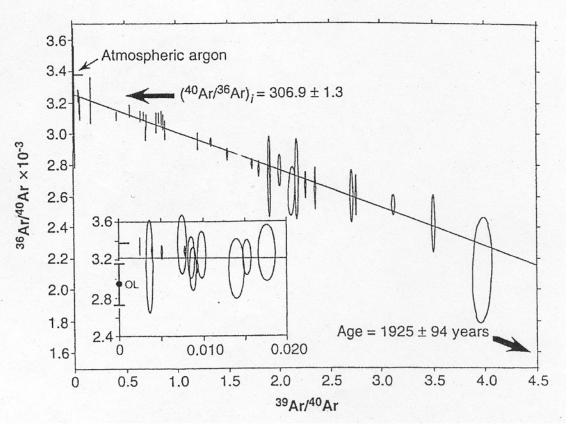



Fig. 6. Age spectrum and inverse isochron diagrams of laser incremental heating data from experiments on each of six large sanidine phenocrysts from sample VGR-3 (Singer and Brown, 2002) in the transitionally magnetized Cerro Santa Rosa I rhyolite dome, New Mexico. Ages obtained in 2013 at the University of Wisconsin-Madison and calculated relative to 28.201 Ma FCs (data in Supplementary documents).

Common practice

- regress data that define plateau segments of age spectra from incremental heating analysis
- Single crystal laser fusion data from sanidine can be regressed

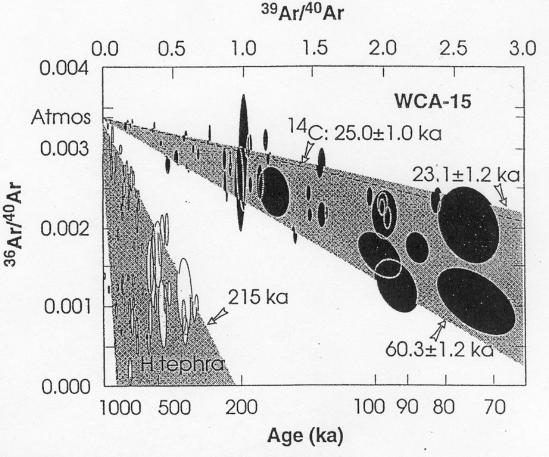
III. 1. Map of the Vesuvius region and Bay of Naples, showing the extent of the area affected by pyroclastic flows during the eruption of A.D. 79. Broken lines are isopachs of the pumice fall during the Plinian phase



Excess argon in 79 A.D. Vesuvius tephra

Renne, Sharp, Deino, Orsi, Civetta (1997) Science, v. 277

Fig. 1. Isotope correlation diagram showing isochron obtained by regression of 46 analyses. The inset shows detail of 13 analyses with the lowest ³⁹Ar/⁴⁰Ar. The mean of five olivine analyses is shown on the ³⁶Ar/⁴⁰Ar axis of the inset with error bars, labeled OL. OL data are not included in the regression. Trapped component $\left[\frac{40}{\text{Ar}}\right]$ is shown by bold arrow.



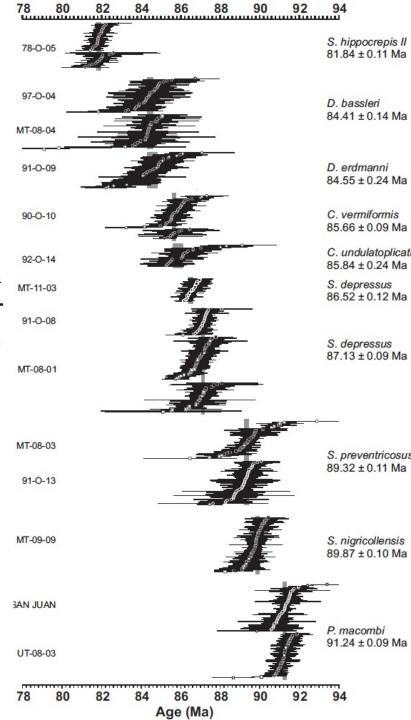
Inherited argon in young tephra

Chen, Smith, Evenson, York, Lajoie (1996) Science, v. 274

Fig. 1. 36Ar/40Ar versus 39Ar/40Ar correlation diagram for sanidine crystals from ash layer WCA-15 (filled ellipses), and for comparison, earlier analytical results (16) from the differentiated Hüttenberg tephra (H tephra) of the East Eifel volcanic field, Germany (open ellipses). All ellipses show 1 or analytical errors. Shaded areas are "sphenochrons," bounded by isochrons passing through the ³⁶Ar/⁴⁰Ar ratio of modern atmosphere (=1/295.5). The bounding isochrons for WCA-15 are determined by statistical analysis of the argon data (10), with the inferred, corrected ¹⁴C age of the tephra (7) shown as a dashed line for comparison. The upper bound for the H tephra is defined by

a 215-ka isochron obtained from anorthoclase crystals from the most mafic lapilli (16). See text for further discussion. Note that one small filled ellipse from the WCA-15 ash is within the H tephra region. All data have been normalized to a *J* value of 1.076×10^{-4} , and the corresponding age scale plotted at the bottom. The integrated age for all WCA-15 data is 38.8 ± 1.1 ka, and is equivalent to the age that would be obtained from a bulk analysis of all the analyzed crystals.

Rank-order diagrams 'CalTech plots'

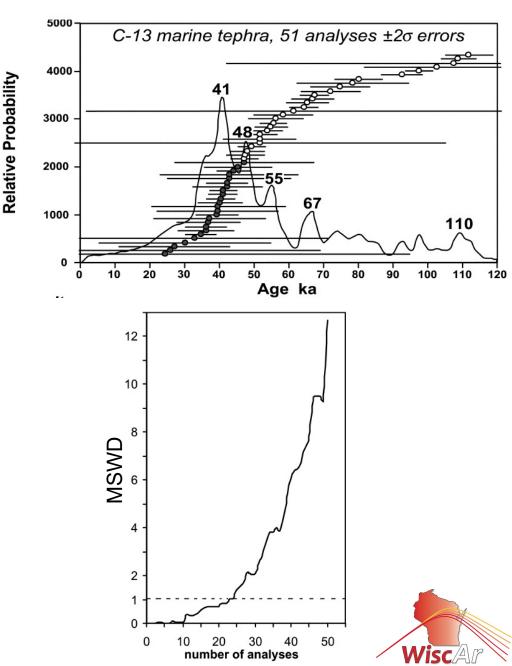

• Used commonly to compare among data sets

Integrating ⁴⁰Ar/³⁹Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA

Bradley B. Sageman^{1†}, Brad S. Singer², Stephen R. Meyers², Sarah E. Siewert^{2,3}, Ireneusz Walaszczyk⁴, Daniel J. Condon⁵, Brian R. Jicha², John D. Obradovich^{6§}, and David A. Sawyer⁶

GSA Bulletin (2014)

- Laser fusion data from sandine crystals in Cretaceous bentonites (altered ash beds)
- Dates from 10 bentonites, here arranged vertically in stratigraphic order, with corresponding biozones


Probability density diagrams

- Means of graphically representing results in lieu of conventional box histograms
 - advantage: incorporates and displays variable uncertainties associated with a suite of ages
 - useful for evaluating multiple ages & uncertainties from sub-samples
 - laser total fusions
 - replicate plateau or isochron ages
- Cumulative probability curve
 - sum of all Gaussian probability distributions of individual analyses, based on estimated analytical uncertainties.
 - justified because analytical uncertainties are normally distributed
- Procedure:
 - choose appropriate minimum-maximum age range
 - divide range into intervals, or bins
 - for each age determination with uncertainty (σ), Gaussian probability (P) is calculated for each bin:

 $P = [1/(2\pi\sigma)^{\frac{1}{2}}]e^{\frac{\Delta^{2}}{2}\sigma^{2}}$

- Δ = difference between bin age and age of the analysis.
- curve is running tally of cumulative probability for each bin

Ton That, Singer, Paterne (2001) single sandine crystals from C-13 marine ash bed

EPSL

www.elsevier.com/locate/epsl

652

64

T. Ton-That et al. | Earth and Planetary Science Letters 184 (2001) 645-658

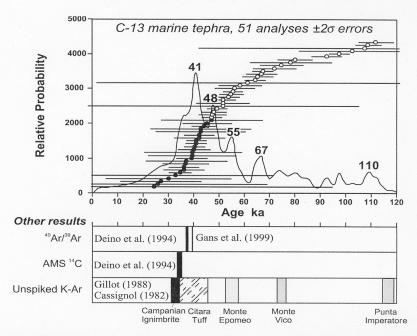


Fig. 3. Probability density plot (ideogram) of apparent ages from tephra layer C-13. Filled symbols denote 24 analyses included in the inverse isochron calculation of Fig. 5. Results from other radioisotopic studies on the Campanian Ignimbrite (black), Citara Tuff (hatched), Monte Epomeo, Monte Vico and Punta Imperatore are discussed in the text.

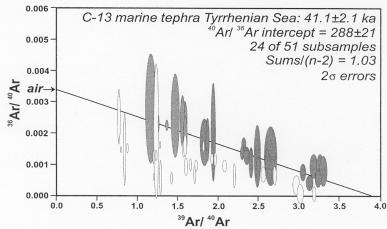
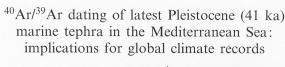
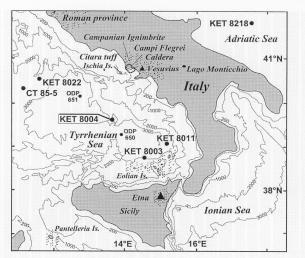



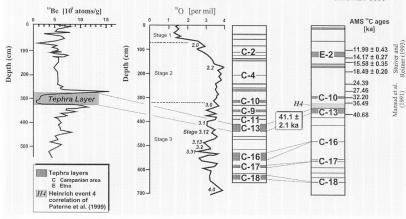
Fig. 5. Inverse isochron diagram of 40 Ar/ 39 Ar laser heating analyses of sanidine in the C-13 tephra layer. The 24 filled ellipses are analyses included in the regression calculation (see Fig. 4), open ellipses were omitted from calculation.


Earth and Planetary Science Letters 184 (2001) 645-658

Thao Ton-That^a, Brad Singer^{b,*}, Martine Paterne^c

^a Earth Science Institute, University of Geneva, 13 rue des Maraichers, Geneva 1211, Switzerland
 ^b Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA
 ^c Laboratoire des Sciences du Climat et de l'Environnement, Unité mixte CNRS-CEA, Gif sur Yvette 91198, France

Received 10 July 2000; received in revised form 14 November 2000; accepted 17 November 2000


T. Ton-That et al. | Earth and Planetary Science Letters 184 (2001) 645-658

Core KET 8004

Core KET 8003

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 70 (2006) 426-445

Geochimica

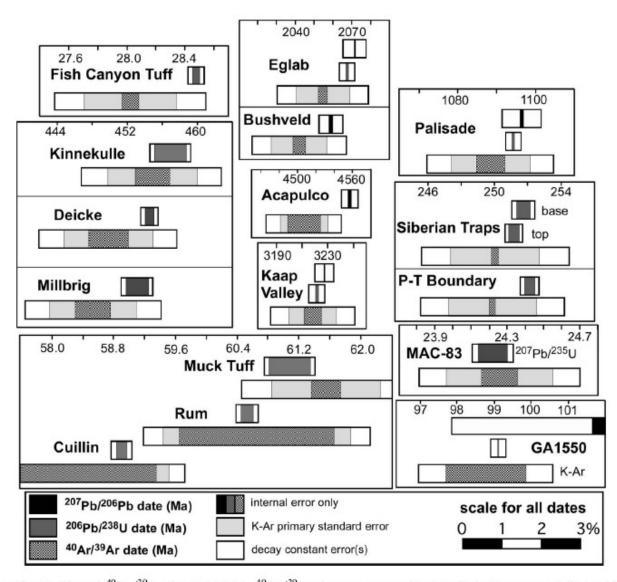
www.elsevier.com/locate/gca

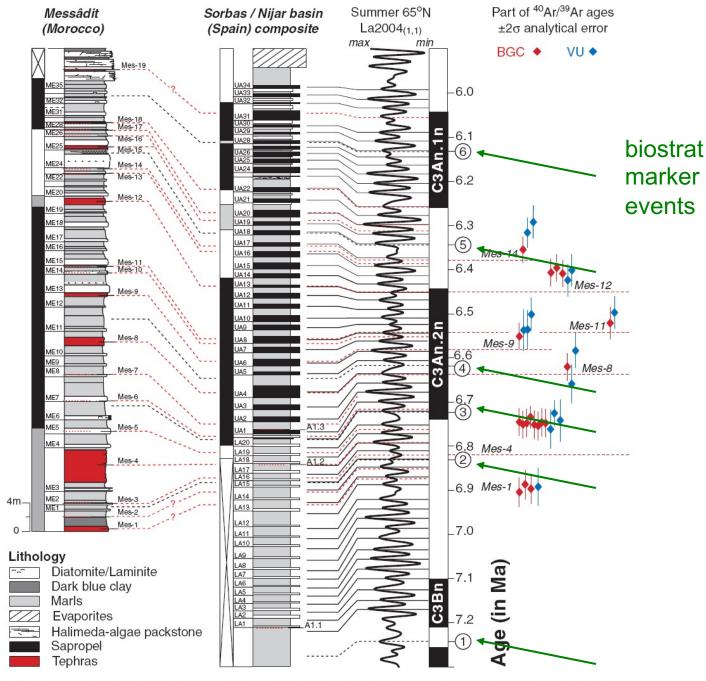
Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data

Blair Schoene^{a,*}, James L. Crowley^a, Daniel J. Condon^a, Mark D. Schmitz^b, Samuel A. Bowring^a

Abstract

As the internal precision of radiometric dates approaches the 0.1% level, systematic biases between different methods have become apparent. Many workers have suggested that calibrating other decay constants against the U–Pb system is a viable solution to this problem. We test this assertion empirically and quantitatively by analyzing U–Pb systematics of zircon and xenotime on the single- to sub-grain scale by high-precision ID-TIMS geochronology on 11 rock samples ranging from 0.1 to 3.3 Ga. Large statistically equivalent datasets give ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ dates that are systematically older than ${}^{206}\text{Pb}/{}^{238}\text{U}$ dates by ~0.15% in Precambrian samples to as much as ~3.3% in Mesozoic samples, suggesting inaccuracies in the mean values of one or both of the U decay constants. These data are used to calculate a ratio of the U decay constants that is lower than the accepted ratio by 0.09% and is a factor of 5 more precise. Four of the samples are used to augment existing data from which the U–Pb and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ systems can be compared. The new data support most previous observations that U–Pb and ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ dates are older than ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ systems can be compared. The new data support most previous observations that U–Pb and ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ dates is not entirely systematic, and may incorporate interlaboratory biases and/or geologic complexities. Studies that calibrate other decay schemes against U–Pb should include an assessment of inaccuracies in the U decay constants in addition to other systematic biases and non-systematic geologic uncertainty.




Fig. 4. Summary diagram for U–Pb and 40 Ar/ 39 Ar dates (in Ma). 40 Ar/ 39 Ar data are normalized to Fish Canyon sanidine = 28.02 Ma and the primar standard GA1550 Ar*/K values of Renne et al. (1998b). Tracer calibration errors for data from this study are negligible at the shown scale and those from other studies are not reported. References are given in Table 2. Errors are at the 95% confidence level.

Synchronizing Rock Clocks of Earth History

K. F. Kuiper,^{1,2} A. Deino,³ F. J. Hilgen,¹ W. Krijgsman,¹ P. R. Renne,^{3,4} J. R. Wijbrans²

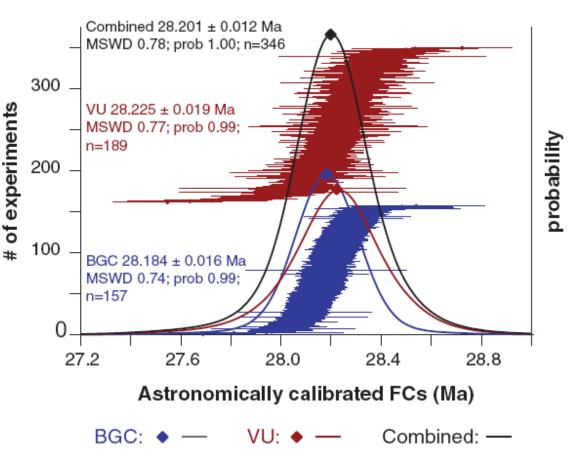

Calibration of the geological time scale is achieved by independent radioisotopic and astronomical dating, but these techniques yield discrepancies of ~1.0% or more, limiting our ability to reconstruct Earth history. To overcome this fundamental setback, we compared astronomical and 40 Ar/ 39 Ar ages of tephras in marine deposits in Morocco to calibrate the age of Fish Canyon sanidine, the most widely used standard in 40 Ar/ 39 Ar geochronology. This calibration results in a more precise older age of 28.201 ± 0.046 million years ago (Ma) and reduces the 40 Ar/ 39 Ar method's absolute uncertainty from ~2.5 to 0.25%. In addition, this calibration provides tight constraints for the astronomical tuning of pre-Neogene successions, resulting in a mutually consistent age of ~65.95 Ma for the Cretaceous/Tertiary boundary.

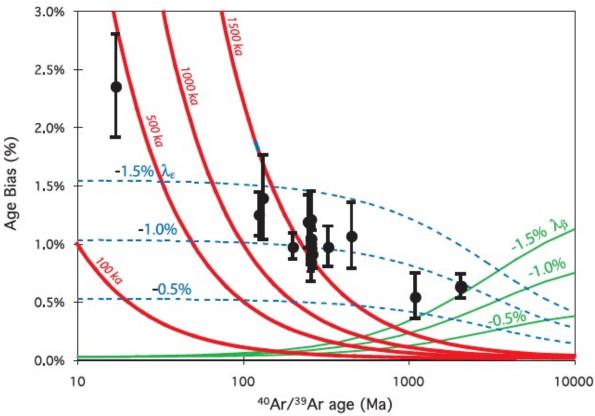
Fig. 1. Astronomical calibration of Messinian Messâdit section in the Melilla-Nador Basin and ⁴⁰Ar/³⁹Ar ages of intercalated tephra. The cycles are tuned to the La2004(1.1) solution (35). The main biostratigraphic marker events registered within the studied sections and used for highresolution correlations are (1) Globorotalia miotumida group first regular occurrence (FRO), (2) *G. nicolae* first common occurrence (FCO) (3) G. nicolae last occurrence (LO), (4) G. obesa FCO, (5) Neogloboquadrina acostaensis sinistral/dextral coiling change, and ((6)) N. acostaensis first sinistral influx (11, 12, 43). The phase relation of the sedimentary cycles to orbital parameters is determined using the exact position of bioevents and characteristic planktonic foraminiferal faunal changes associated with the sedimentary cyclicity in the pre-evaporite Messinian Sorbas basin (43). Homogeneous marks in the Moroccan sections correspond to sapropels in Sorbas and other Mediterranean sections (11). Astronomical ages for the tephras are derived by linear interpolation between two astronomically tuned points (that is, three-quarters of the height from the base of the homogeneous interval in each cycle is correlated to the insolation

maximum). Weighted mean 40 Ar/ 39 Ar ages of tephra intercalated in the Messâdit section and analyzed in BGC and VU are shown, calculated relative to an age of 28.02 Ma for FCs (4) (table S1). The 2 σ error bars include only analytical uncertainties of samples and standards.

Fig. 2. Astronomically calibrated FCs age. The ⁴⁰Ar/³⁹Ar ages of the ash layers are converted to an astronomically calibrated age for FCs by using the Melilla sanidines as astronomically dated standards and the FCs as the unknown. Instead of doing this exercise for each tephra horizon separately, we included all reliably (both isotopic and astronomical) dated tephra to prevent an a priori bias to one of the astronomically dated tephra. However, the calibrated age is an inverse-variance weighted

mean age; thus, tephra mes4, with the highest number of replicate analyses and the most precise data, dominates the final outcome. We include only the single-crystal fusion data (displayed here with 1 σ analytical error), and ages with P > 0.1. Incremental heating experiments on selected sanidine fractions confirm the thermally undisturbed nature of the samples (14). We calculate an astronomically calibrated FCs age for each experiment propagating only analytical uncertainties. The weighted mean FCs age and standard analytical error for BGC and VU data are displayed separately and as a combined-age probability diagram. The 28.201 ± 0.012 Ma age for FCs is converted to an intercalibration factor of R^{FCs}_{astro} of 4.3644 ± 0.0018 for a T_{astro} at 6.500 Ma. This translates to 28.201 ± 0.046 Ma, including decay-constant uncertainties and the uncertainty in the astronomical ages of ±10 ky.

Available online at www.sciencedirect.com


Geochimica et Cosmochimica Acta

Geochimica et Cosmochimica Acta 74 (2010) 5349-5367

www.elsevier.com/locate/gca

Joint determination of ⁴⁰K decay constants and ⁴⁰Ar*/⁴⁰K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰Ar/³⁹Ar geochronology

Paul R. Renne^{a,b,*}, Roland Mundil^a, Greg Balco^{a,b}, Kyoungwon Min^c, Kenneth R. Ludwig^a

- 1% bias between ⁴⁰Ar/³⁹Ar ages calibrated using FCs at 28.02 Ma and 16 U-Pb zircon ages from quickly cooled rocks
- 'Optimization' algorithm used to determine age for FCs that eliminates this bias

• FCs = 28.294 Ma

Schmitz and Kuiper (2012) modified from Renne et al. (2010)

U-Pb and ⁴⁰Ar/³⁹Ar ages of Fish Canyon Tuff re-examined in 2013

Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption

Jörn-Frederik Wotzlaw1*, Urs Schaltegger1, Daniel A. Frick2, Michael A. Dungan1.3, Axel Gerdes4.5, and Detlef Günther2

ABSTRACT

The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these subcaldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canvon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ~440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ~5000 km³ of eruptible crystal-rich (~45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.

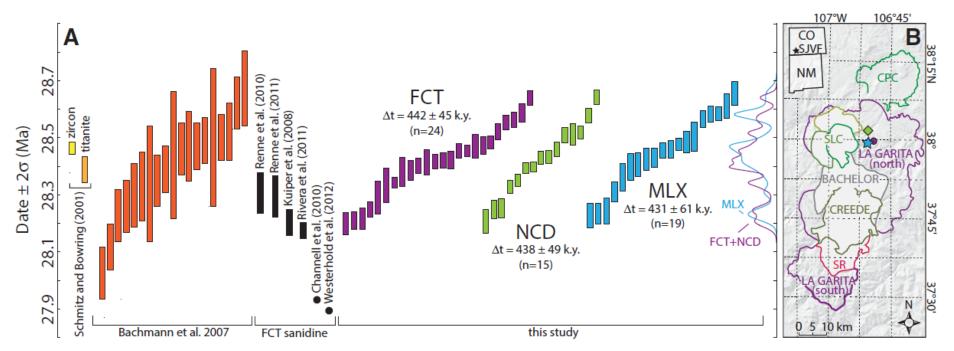
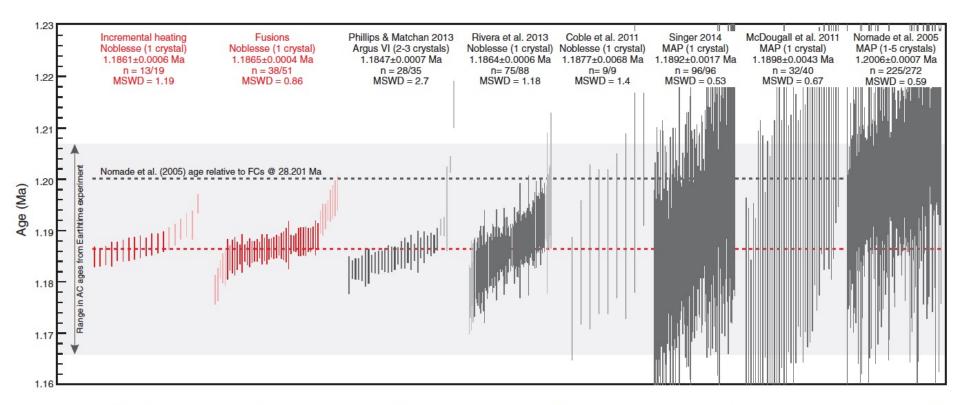



Figure 1. Geochronology of the Fish Canyon (Colorado, United States) magmatic system. A: Comparison of previously published zircon and titanite U-Pb and sanidine ⁴⁰Ar/³⁹Ar dates with zircon U-Pb dates obtained in this study. All U-Pb dates are ²⁰⁶Pb/²³⁸U dates corrected for initial ²³⁸U-²³⁰Th disequilibrium using Th/U_{melt} of 2.2 (Schmitz and Bowring, 2001). Δt denotes age difference between oldest and youngest zircon date of each sample. Probability density functions show distribution of ²⁰⁶Pb/²³⁸U dates. FCT—Fish Canyon Tuff; NCD—Nutras Creek Dacite; MLX—andesite enclave. B: Caldera map of the Central San Juan caldera cluster showing locations of samples analyzed in this study; inset map (top left) shows location of San Juan volcanic field (SJVF) within the state of Colorado. CPC—Cochetopa Park caldera; SLC—San Luis complex; SR—South River caldera.

An EARTHTIME-Calibrated ⁴⁰Ar/³⁹Ar Laboratory

Alder Creek Rhyolite sanidine (ACs-2) standard Jicha, SInger, Sobol (2016) Chemical Geology

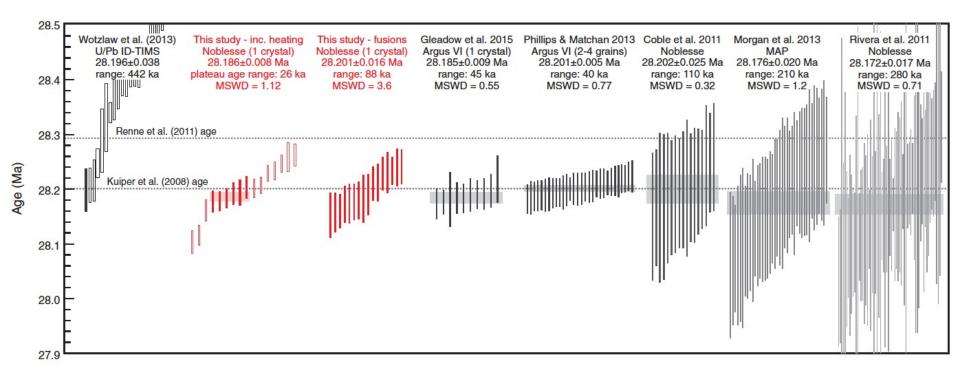


Fig. 4. Comparison of ⁴⁰Ar/³⁹Ar ages determined for Alder Creek rhyolite sanidine sample ACs-2 since 2005. ⁴⁰Ar/³⁹Ar ages are shown with $\pm 2\sigma$ analytical uncertainties only. Some of the published ages have been recalculated so that all the data in this figure are relative to 28.201 Ma for the Fish Canyon sanidine. The commonly used age from Nomade et al. (2005) is shown as a dotted line. Gray band indicates range in ages generated during the EARTHTIME laboratory intercalibration experiment (Heizler and EARTHTIME working group, 2008). Recent experiments including all the data collected using multi-collector mass spectrometers (Phillips and Matchan, 2013; Rivera et al., 2013) give ages that are significantly younger than the Nomade et al. (2005) age. Our preferred age (red dotted line) for AC-2 based on a weighted mean of the Rivera et al. (2013) dates and our plateau ages and total fusion dates is 1.1864 \pm 0.0003/0.0012 Ma (95% confidence analytical/full external).

Data sources: Phillips and Matchan (2013); Rivera et al. (2013); Coble et al. (2011); Singer (2014); McDougall et al. (2011); Nomade et al. (2005).

An EARTHTIME-Calibrated ⁴⁰Ar/³⁹Ar Laboratory

Fish Canyon Tuff sanidine (FCs) standard Jicha, SInger, Sobol (2016) Chemical Geology

Fig. 7. Comparison of 40 Ar/ 39 Ar ages determined for Fish Canyon sanidine sample FC-2. All 40 Ar/ 39 Ar ages are shown with analytical uncertainties only and are relative to 28.201 Ma for the Fish Canyon sanidine (Kuiper et al., 2008). Note that all total fusion data were performed on single crystals except for that of Phillips and Matchan (2013), which fused 2–4 crystals per analysis. Our single crystal total fusion experiments gave a range in dates spanning ~88 ka and thus have a MSWD of 3.6. Overall the range in dates is similar to those of the previous studies. Only 6 of the 16 single crystal incremental heating experiments gave statistically acceptable plateaus (filled red boxes). A weighted mean age of these 6 plateaus is 28.186 ± 0.008 Ma. The total fusion ages for the crystals which did not yield plateaus are shown as open boxes. CA-IDTIMS U–Pb zircon dates are from Wotzlaw et al. (2013); the youngest zircon (solid black bar) is 28.196 ± 0.038 Ma. We recognize that there are other published U–Pb zircon datasets for the Fish Canyon Tuff. However, the purpose of the figure is to highlight the age complexity within the FCT not select an absolute age for the FCT.

Data sources: Wotzlaw et al. (2013); Gleadow et al. (2015); Phillips and Matchan (2013); Coble et al. (2013); Morgan et al. (2013); Rivera et al. (2011).